
Neural Networks for Audio: a Survey and Case Study

P. A. I. Forsyth
Department of Applied Mathematics

University of Waterloo
Waterloo, ON, N2L 3G1
pa2forsy@uwaterloo.ca

December 9, 2018

Abstract

After discussing the theoretical approximation capabilities of simple shallow neural networks, I survey
recent work on the advantages of deep neural networks. I then overview some practical considerations
for the training of deep convolutional neural networks. Finally, I describe my submission to the 2018
DCASE Freesound General-Purpose Audio Tagging Challenge, in which I trained deep convolutional
neural networks to label the log spectrograms of audio clips. My submission ranked in the top 3%.

Contents

1 Introduction 3

2 Neural Network Theory 5
2.1 Computation Graphs . 5
2.2 Neural Networks . 6
2.3 Expressive Power of Neural Networks . 7

2.3.1 Density of Shallow Networks . 7
2.3.2 Order of Approximation of Shallow Neural Networks 10

2.4 The Approximation Benefits of Depth . 13
2.4.1 The Number of Linear Regions of Deep and Shallow Networks 13
2.4.2 Depth for Approximating Compositional Functions 16

2.5 Convolutional Neural Networks . 18
2.5.1 ConvNet Definition . 18

2.6 Machine Learning . 20
2.6.1 The Machine Learning Framework . 21
2.6.2 Machine Learning with Convolutional Neural Networks 23

3 Optimization for Practical Convolutional Neural Networks 24
3.1 Introduction . 24
3.2 Optimization Algorithms . 24
3.3 Batch Normalization . 25

4 Audio Processing 27
4.1 Introduction . 27
4.2 How the Ear Processes Sound . 27
4.3 The Short-Time Fourier Transform . 27
4.4 Practical Considerations . 29

4.4.1 The Sub-Sampled Short-Time Fourier Transform . 29
4.4.2 Further Memory Savings . 31
4.4.3 Log Magnitude . 31

5 Freesound General-Purpose Audio Tagging Challenge 32
5.1 Why it is Reasonable to Apply Convolutional Neural Networks to Spectrograms 32
5.2 Architectures . 34

5.2.1 ResNet . 35
5.2.2 Progressive NASNet . 36

5.3 Activation Function . 36
5.4 Optimization . 37
5.5 Data Augmentation . 37

1

5.5.1 Pitch Shifting . 37
5.5.2 Mixup . 38

5.6 Data Balancing . 39
5.7 Data Weighting . 39
5.8 Clip Duration . 39
5.9 Ensembling . 40
5.10 Software . 40
5.11 Results . 40
5.12 Other Attempts . 42

6 Conclusions 51

A Description of Backward Propagation 52

B Additional Proofs 53
B.1 Non-Smooth Activation Functions . 53
B.2 Ridge Polynomials . 54

B.2.1 Multi-indexes . 54
B.3 Polynomials . 54

C Additional Layer Types for Convolutional Neural Networks 56
C.1 Depthwise Separable Convolutions . 57

D Freesound General-Purpose Audio Tagging Challenge Labels 58

E List of Symbols 59

2

Chapter 1

Introduction

Artificial intelligence’s early successes were in highly-structured problems, like chess[HGN90]. Less struc-
tured problems, like the recognition of images and sounds or the understanding of language, proved much
more challenging. Although a human can easily decide whether an image is of a cat, determine whether a
sound clip contains a cat’s meow, or understand a sentence describing a cat, it is a tall order to explicitly
specify the rules by which these judgments are made in a form usable by computers. Consequently, for a
long time these problems appeared beyond the capabilities of AI.

Faced with such difficulties, some researchers abandoned the old axiom that “. . . one can explicitly,
declaratively represent a body of knowledge in a way that renders it usable by . . . programs.”[LGP+90].
Instead of explicitly representing their knowledge about the problem, they programmed computers to
implicitly acquire knowledge about the problem from a large number of examples of the problem being
solved. Though this implicit knowledge was sometimes opaque to humans, it could often be used by the
program solve previously unseen examples of the problem. This procedure became the basis of the vast
field known as machine learning1.

Machine learning frames the acquisition of implicit knowledge about a problem from examples as
the approximation of an unknown function from observations of its values2. From this point of view,
the essential question is what function approximators should be used. Machine learning offers myriad
answers to this question, including— to name a few— linear and logistic regression; trees and ensembles
thereof[Bre01, Fri01]; and density mixture models[FHT01, Chapter 8]3. Recently, there has been a boom
in interest in a powerful class of function approximators called neural networks.

Neural networks were studied in a nascent form in the middle of the twentieth century[MP43, WH60],
were extensively developed in the 1980s[RHW85, LTHS88, LBD+89], and have recently achieved impressive
performance on a wide range of tasks[KSH12, MKS+15, BCB14], largely as a consequence of the availability
of GPUs, which enable fast multiplication of large dense matrices via tiling algorithms[KWM16, Chapters
4,16]4 Neural networks lie at the heart of an ongoing AI revolution, whose advances are being rapidly
adopted by industry in such areas as machine translation[WSC+16], facial recognition[TYRW14], and the
guidance of self-driving cars[HWT+15].

This essay is a survey of the theory and practice of machine learning with neural networks, including

1As mentioned above, early chess programming was primarily non-machine-learning AI. Even in this highly structured
domain, however, the creators of the best chess programs eventually realized that there was much to be gained by the incorpo-
ration of machine learning techniques. Deep Thought, for example, automatically tuned the parameters of it’s board-position
evaluation function to minimize the difference between it’s recommended moves and those played by grandmasters[HACN90,
pg. 48]. In the modern AI era, the importance of machine learning to game-playing algorithms has only increased[SHM+16].

2Machine learning resembles statistics in that both fields approximate unknown functions using data. However, they
differ in focus. Roughly speaking statisticians are more interested in understanding the function being approximated, while
machine learning practitioners focus on the ability of the approximation to make predictions.

3Interestingly, in 2013 the standard approach to audio classification used Gaussian mixture models[SGB+15].
4The release of very large datasets[DDS+09, GEF+17, TSF+16], have also contributed to the success of neural networks.

3

a practical case study. It begins with Chapter 2, an overview of some classic and modern neural network
theory. Chapter 2 is quite dense, and can be safely skimmed. A central theme of the chapter is that
the key feature of neural networks is their compositional structure, and that this feature explains much
of their power. In Sections 2.1 and 2.2, I introduce the computation graph framework, which is useful
for describing neural networks and automatically differentiating them. In Section 2.3.1, I explore the
expressive power of neural networks by establishing Proposition 4, a classic result that shows that even
very simple neural networks can approximate a very large class of functions. In Section 2.3.2, I study the
quality of this approximation as a function of the size of the network. I state and prove Proposition 6, an
important result from the 1990s that shows that neural networks are at least as efficient approximators as
the polynomials. In Section 2.4, I turn to more recent research on the power of increasing the degree of
compositionality or “depth” of a neural network, and the advantages of deep networks over shallow ones.
There are two strands of this research. The first strand shows that by various measures, the functions
representable by deep neural networks are more complex and interesting that the ones representable by
shallow networks. The second strand argues that functions of specific compositional structure can be
approximated efficiently by deep neural networks matching that structure. In Section 2.5, I introduce
the convolutional neural network, the most powerful and popular variant of neural network in use today.
Convolutional neural networks have roots in computer vision research of the 1980s[LBD+89], but are being
applied to increasingly diverse fields[GAG+17, CFS16]. The chapter concludes with Section 2.6, which
describes how to integrate convolutional neural networks into a theoretical machine learning framework.

The remaining chapters discuss practical neural networks and their application to a Kaggle competi-
tion. The results of Sections 2.3.1, 2.3.2, and 2.4 are not directly applicable to practical neural networks,
since those sections describe the optimal approximation of known functions, whereas in practical circum-
stances we do not know the function we are approximating and cannot tell if the neural network we have
trained is optimal. Nevertheless, Chapter 2 provides general motivation for the use of neural networks by
theoretically analyzing their expressive power.

Chapter 3 treats various topics pertaining to optimization for practical convolutional neural networks.
These topics have a less firm theoretical foundation than those of the previous chapter, but they are
of great practical importance. Section 3.2 introduces stochastic gradient descent and minibatch gradient
descent, and offers a few arguments as to why they are preferred to standard gradient descent for optimizing
convolutional neural networks. In Section 3.3, I discuss batch normalization, a well-established but poorly-
understood technique for improving the optimization of convolutional neural networks. I cite some recent
research that may better describe the mechanism by which batch normalization aids optimization than
more traditional explanations.

As an illustration of the application of deep neural networks, Chapters 4 and 5 describe my submission
to an audio-classification competition. The contest organizers provided participants with collection of
audio clips, each with one of 41 labels such as “Acoustic Guitar”, “Fireworks”, or “Bus”. The participants
were instructed to use the audio clips and a machine learning algorithm of their choice to predict the labels
of previously unseen clips. My submission, an ensemble of deep convolutional neural networks trained on
the audio clips, scored in the top 3%. Chapter 4 focuses on the short-time Fourier transform (STFT),
a way of analyzing how the frequency components of a sound change over time. I first state a simple
theoretical result that reveals some important properties of the STFT, and then discuss some practical
aspects. This chapter is of great import, since my convolutional neural networks accept as input not the
raw audio clips, but their spectograms, which are generated using the STFT.

I begin Chapter 5 by drawing upon psychological research into the way humans process sound to
argue that spectrograms are reasonable inputs for convolutional neural networks. I then move on to
describe the specific convolutional neural networks I used in my submission. Finally, I discuss the data
balancing, masking, and augmentation schemes used in my submission and in that of the contest winners.
I conclude by noting the general importance of these data processing techniques to the training of deep
neural networks.

4

Chapter 2

Neural Network Theory

In this chapter, we describe a formal framework for neural networks and survey some theoretical results.

2.1 Computation Graphs

The distinguishing feature of neural networks as function approximators is their compositional structure.
Because it is suitable for describing compositional structure, we begin by introducing the computation
graph framework.

Definition 1. Let (V,E) be a directed graph. Given a vertex v ∈ V , define its input and output vertexes
by

in(v) = {u ∈ V | (u, v) ∈ E} (2.1)

out(v) := {u ∈ V | (v, u) ∈ E}. (2.2)

The graph’s input and output vertexes are given by

Vin := {v ∈ V | # in(v) = 0} (2.3)

Vout := {v ∈ V | # out(v) = 0}. (2.4)

To simplify notation, for any symbol s and any vertex v we write sin(v) to mean
⊕

u∈in(v) su where
⊕

denotes Cartesian product when the su are sets and tuple formation when the su are elements.

Definition 2. A computation graph consists of

1. A directed acyclic graph (V,E),

2. For each vertex v ∈ V , sets Dv and Rv (called the vertex domain and vertex range) such that at
non-input vertexes (v /∈ Vin), these sets satisfy

Dv = Rin(v), (2.5)

3. For each vertex v ∈ V , a vertex function cv : Dv → Rv.

The range R of a computation graph is the Cartesian product of the vertex ranges of its output
vertexes. The domain D of a computation graph is the Cartesian product of the vertex domains of its
input vertexes. In this essay, the domain, range, vertex domains, and vertex ranges of every computation
graph will be subsets of Euclidean spaces. The depth of a computation graph is the length of its longest
path. The non-input non-output vertexes in a computation graph are called hidden units.

5

Definition 3. A computation graph G induces a function F : D → R defined via intermediate functions
Fv : D → Rv for v ∈ V . The Fv are recursively given by

Fv(x) :=

{
cv(xv) if v ∈ Vin
cv
(
Fin(v)(x)

)
otherwise

, (2.6)

where xv denotes the component of x corresponding1 to v. F is given by F (x) :=
⊕

v∈Vout
Fv(x), where

again
⊕

denotes tuple formation.

Thus F operates on an input by propagating it through the computation graph G using its vertex
functions. This procedure is called forward propagation.

The function induced by a computation graph can be differentiated via a recursive procedure called
backward propagation, which is key to efficient implementation. See Section A.

Example 1. Suppose we wish to implement the function fα,β : R2 → R with fα,β(x, y) = (αx + βy)2.
Set V = {M1,M2, S,Q}, E = {(M1, S), (M2, S), (S,Q)}, DM1

= DM2
= R and Rv = R for all v ∈ V .

Also set

cM1
(z) = αz (2.7)

cM2
(z) = βz (2.8)

cS(z1, z2) = z1 + z2 (2.9)

cQ(z) = z2. (2.10)

This computation graph implements the desired function.

2.2 Neural Networks

Having established the computation graph framework, we are now in a position to introduce neural
networks, a form of computation graph in which all nonlinearies are scalar.

Definition 4. With the notation of Section 2.1, a vertex in a computation graph is said to be a simple
neuron with activation function σ for some σ : R→ R if

1. Rv = R and Dv = Rnv for some integer nv.

2. For all x ∈ Dv

cv(x) = σ(〈x, a〉+ b) (2.11)

for some a ∈ Dv and b ∈ R (where 〈·, ·〉 denotes the standard real inner product: 〈x, a〉 =
∑
i xiai).

Definition 5. With the notation of Section 2.1, a vertex v in a computation graph is said to be a transfer
vertex if

1. Rv = Dv

2. cv is the identity function.

Definition 6. A computation graph is a simple neural network with activation function σ for some
σ : R → R if every input vertex is a transfer vertex, every output vertex is a simple neuron with the
identity as its activation function, and every non-input non-output vertex is a simple neuron with σ as its
activation function.

1i.e. x =
⊕
v∈V xv

6

Remark 1. Neural networks derive their name from their original interpretation, which was biological.
The neurons of a neural network were seen as modeling biological neurons. v ∈ in(w) indicated that
neuron v should be viewed as being connected to neuron w by an axon. σ was generally the step function

σ(x) =

{
1 if x > 0

0 otherwise
, (2.12)

or a close approximation to it. σ(x) = 1 indicated that the voltages transmitted along the input axons
to a given neuron were sufficient to excite an action potential, while σ(x) = 0 indicated that they were
insufficient. Neural networks used for machine learning have since diverged from those used for biological
modeling in response to the differing demands of the two fields. For the rest of this essay we focus on the
former (see [ESC+12] for an example of the latter).

We introduce a particularly simple form of neural network, which has the advantage of having fairly
well-understood theoretical properties.

Definition 7. Let σ : R → R. A simple neural network with activation function σ is called a simple
shallow neural network with activation function σ if

1. It has depth 2.

2. It has one input vertex.

3. It has one output vertex.

Simple shallow neural networks represent functions of the form x 7→
∑w
i=1 viσ(〈x, ai〉+θi)+µ. Without

loss of generality we will assume µ = 0. Figure 2.1 illustrates the structure of simple shallow neural
networks.

Figure 2.1: A simple shallow neural network.

2.3 Expressive Power of Neural Networks

2.3.1 Density of Shallow Networks

As neural networks are function approximators, it is natural to ask what functions they approximate. We
defer until Section 2.3.2 the issue of efficiency, and here study only whether or not a given function can be

7

approximated. In topological terms, we are interested in the sets of functions in which neural networks are
dense. For this purpose, it will be sufficient to study only the simple shallow neural networks described
in Definition 7, as we will find that any continuous function can be approximated by such a network with
minimal conditions. The main propositions and proofs in this section are taken from [Pin99].

The study of simple shallow neural networks is closely linked to the study of ridge functions[Pin15].

Definition 8. A ridge function is a function f : Rn → R of the form

f(x) := g(〈a, x〉) (2.13)

for some a ∈ Rn, and g ∈ C(R) (C(R) denotes the set of all continuous functions on R). Define the span
of the ridge functions in n dimensions as:

ridgen := span{g(〈·, a〉)|a ∈ Rn, g ∈ C(R)}, (2.14)

where as usual span(S) is the set of linear combinations of the functions in S.

Remark 2. Since ridgen includes all functions of the form x 7→
∑w1

j=0

∑w2

i=0 ρi,j〈aj , x〉i for w1, w2 ∈
Z+, ρi,j ∈ R, aj ∈ Rn ∀i, j, and since every polynomial can be written in this form (we prove this in
Proposition B.3), it follows by the Stone-Weierstrass Theorem[R+76, Theorem 7.32 pg 162] that ridgen
is dense in the continuous functions on Rn. Our strategy for proving that simple shallow neural networks
with an appropriate activation function are dense in C(Rn) will employ this result as a dimension-reduction
technique: we will approximate an arbitrary continuous function on Rn by a sum of ridge functions, and
then approximate the one-dimensional g associated with each ridge function by a simple shallow neural
network. We begin by defining the set of functions representable as simple shallow neural networks.

Definition 9. Assume σ : R→ R. Define

SSNNn(σ) := span{σ(〈·, a〉+ θ)|a ∈ Rn, θ ∈ R}. (2.15)

We also define the set of functions representable by simple shallow neural networks with a fixed number
of hidden units r.

Definition 10. Assume σ : R→ R and r > 0. Define

SSNNr
n(σ) := {

r∑
i=1

ρiσ(〈·, ai〉+ θi)|ai ∈ Rn, θi ∈ R, ρi ∈ R ∀i}. (2.16)

Remark 3. We noted in Section 2.1 that a distinguishing characteristic of neural networks is their
compositional structure. This observation applies even to simple shallow neural networks: we generate a
member of the family SSNNr

n(σ) by pre-composing σ with r different affine functions, then taking a linear
combination of the results.

Proposition 1 enables the dimension-reduction technique outlined in Remark 2.

Proposition 1 (Proposition 3.3 in [Pin99]). Apply the topology of uniform convergence on compact sets
to C(R) and C(Rn). Let σ : R → R. Suppose SSNN1(σ) is dense in C(R). Then SSNNn(σ) is dense in
C(Rn).

Proof. Let f ∈ C(Rn). Given ε > 0 and a compact set K ⊂ Rn, since ridgen is dense in C(Rn) (see
Remark 2), we can find r > 0, g1, . . . , gr ∈ C(R), and a1, . . . , ar ∈ Rn such that

sup
x∈K
|f(x)−

r∑
i=1

gi(〈ai, x〉)| <
ε

2
. (2.17)

8

Note that since K is compact and 〈·, ai〉 is continuous, Ki := 〈K, ai〉 is compact for all i.
Since SSNN1(σ) is dense in C(R) by hypothesis, for each gi we can find si ∈ Z++, ρi,1, . . . , ρi,si ∈ R,

λi,1, . . . , λi,si ∈ R, θi,1, . . . , θi,si ∈ R such that

sup
y∈Ki
|gi(y)−

si∑
j=1

ρi,jσ(λi,jy + θi,j)| <
ε

2r
. (2.18)

Thus we have

sup
x∈K
|f(x)−

r∑
i=1

si∑
j=1

ρi,jσ(λi,j〈ai, x〉+ θi,j)| (2.19)

≤ sup
x∈K
|f(x)−

r∑
i=1

gi(〈ai, x〉)|+
r∑
i=1

|gi(〈ai, x〉)−
si∑
j=1

ρi,jσ(λi,j〈ai, x〉+ θi,j)| (2.20)

< ε (2.21)

as desired.

We have reduced the problem of approximating by simple shallow neural networks on Rn to the
corresponding problem on R, which we now tackle. In what follows, cl(S) denotes the closure of the set
S.

Proposition 2 (Proposition 3.4 in [Pin99]2). Apply the topology of uniform convergence on compact sets
to C(R). Assume σ ∈ C∞(R) is not a polynomial. Then for all s > 0, the polynomials of degree less than
or equal to s lie in cl SSNNs+1

1 (σ). Hence all polynomials lie in cl SSNN1(σ).

Proof. Fix s > 0 and let 0 ≤ r ≤ s. Since σ ∈ C∞(R) but is not a polynomial, there must exist a θr ∈ R
such that3 σ(r)(θr) 6= 0. For λ ∈ R, h ∈ (0,∞), and k ∈ {0, . . . , r} consider f(·;λ, h, k) : R → R given
by f(t;λ, h, k) := σ((λ+ kh)t+ θr). For each choice of h and λ, the r + 1 functions {f(·;h, λ, k)}rk=0 can
be used to construct an order-h forward-difference approximation4 to the function dr

dλr f(·; 0, λ, 0). Since

it is a linear combination of r + 1 affine pre-compositions of σ, this approximation lies in SSNNr+1
1 (σ) ⊂

SSNNs+1
1 (σ). Furthermore for a particular λ, when t is restricted to a compact set, this finite difference

approximation converges uniformly5 in t as h ↓ 0 to the function t 7→ dr

dλr σ(λt + θr), which therefore lies

in cl SSNNr+1
1 (σ). By chain rule this function is t 7→ trσ(r)(λt + θr). Choosing λ = 0, we have that

t 7→ trσ(r)(θr) lies in cl SSNNr+1
1 (σ). But by our choice of θr, we have σ(r)(θr) 6= 0, so the monomial

t 7→ tr lies in cl SSNNr+1
1 (σ). Hence all monomials of degree less than or equal to s lie in cl SSNNs+1

1 (σ).
So all polynomials of degree less than or equal to s lie in cl SSNNs+1

1 (σ) as desired.

Remark 4. In Remark 3 we noted that a key attribute of families of neural networks is their compositional
structure. This structure was used to the proof of Proposition 2, where it enabled the application of the
chain rule.

Proposition 2’s requirement that σ ∈ C∞(R) can be weakened so that σ need only be continuous.

2Modified to remove dependence on another theorem.
3σ(r) denotes the rth derivative of σ.
4i.e. dr

dλr
f(·; 0, λ, 0) = dr

dλr
σ(λ · +θr) ≈ 1

hr
∑r
k=0(−1)r−k

(r
k

)
σ((λ + kh) · +θr) = 1

hr
∑r
k=0(−1)r−k

(r
k

)
f(·;h, λ, k). See

(2.17), (2.23), and (2.29) in[Boo81].
5To see this, note that by Theorem 2.2 in [Boo81], our finite difference approximation equals dr

dλr
f(·; 0, λ′, 0) for some

λ′ ∈ (λ, λ+rh). Since we know σ ∈ C∞(R), we can bound | d
r

dλr
f(·; 0, λ′, 0)− dr

dλr
f(·; 0, λ, 0)| = |(λ′−λ) d

r+1

dλr+1 f(·; 0, λ′′, 0)| ≤

rh| d
r+1

dλr+1 f(·; 0, λ′′, 0)| for some λ′′ ∈ (λ, λ + rh). Since t ∈ K for a compact interval K, by choosing h < h̃ for some h̃, we

have that λ′′t + θr ∈ [λ, λ + rh̃]K + θr, which is also a compact interval. By continuity this provides us with a uniform

bound in t on | d
r+1

dλr+1 f(t; 0, λ′′, 0)| = |tr+1σ(r+1)(λ′′t+ θr)| and thus a uniform bound in t on the approximation error.

9

Proposition 3 (Proposition 3.7 in [Pin99]). Apply the topology of uniform convergence on compact sets
to C(R). Assume σ ∈ C(R) is not a polynomial. Then all polynomials lie in cl SSNN1(σ).

See Section B for the proof. We now have the tools to establish a very general density result.

Proposition 4. Apply the topology of uniform convergence on compact sets to C(Rn). Assume σ ∈ C(R)
is not a polynomial. Then SSNNn(σ) is dense in C(Rn).

Proof. By Proposition 3, cl SSNN1(σ) contains the polynomials. By the Stone-Weirstrauss theorem, the
polynomials are dense in C(R)[R+76, pg. 162 Theorem 7.32]. By Proposition 1, we have the desired
result.

Remark 5.

1. Proposition 4 shows that simple shallow neural networks are very expressive, as they possess the
prodigious approximation capabilities of the polynomials. This observation can form the start of an
argument for the use of neural networks as function approximators, but much ground remains to be
covered. In Section 2.3.2 we will consider the efficiency of simple shallow neural networks, while in
Section 2.4 we will survey a few arguments about the benefits of depth.

2. The requirement that the activation function be nonpolynomial is necessary. A neural network with
fixed depth and a fixed polynomial activation function is itself a polynomial whose degree is bounded
by a function of the depth and activation function. Since the set of polynomials of degree bounded
by a constant is closed, such networks cannot be universal approximators.

3. There are numerous alternative approaches for proving analogous results. For example, the authors
of [Hor93] and [Cyb89] take a functional analysis approach. To get a contradiction they assume
that cl SSNNn(σ) is not all of C(Rn). Under this assumption, they apply a corollary of the Hahn-
Banach Theorem[Fol13, Theorem 5.8 pg. 159] to find a nonzero linear functional that is zero on
cl SSNNn(σ). They then use the Riesz Representation Theorem[Fol13, Theorem 7.17 pg. 223] to
represent this functional as a nonzero Radon measure. Finally, they generate a contradiction by
showing that Radon measures that integrate to zero for all functions in SSNNn(σ) must be zero.

4. The proofs presented here and the functional analysis proofs referred to above are nonconstructive,
and hence provide no information on how to build the approximating networks. Several researchers
have given constructive proofs. For example, the authors of [CCL95] assume a sigmoidal activation
function, approximate their target functions by piecewise constant functions, and then approximate
these piecewise constant functions with their neural networks. These constructive proofs tend to be
more complex and apply to a more limited class of activation functions than nonconstructive proofs.

5. Unlike Proposition 2, Proposition 3 does not specify how many neurons are required to approximate
polynomials of given degree. This is because of the Riemmann integration step in the proof of
Proposition 3 (see Section B).

2.3.2 Order of Approximation of Shallow Neural Networks

Section 2.3.1 showed that neural networks have the universal approximation property by relating them to
polynomials, which are known to have this property. This section takes a similar approach to establishing
the order of approximation of neural networks. Throughout this section, we fix a compact convex set
K ⊂ Rn that contains an open ball. All function norms6 are with respect to K. We rely on the following
result about polynomials7.

6When we say f ∈ Cm(K) for a compact set K, we mean f ∈ Cm(O) for an open set O such that K ⊂ O. Nevertheless
all norms are with respect to K. For example: ‖f − g‖∞ = supx∈K |f(x)− g(x)| .

7We use muli-indexes as defined in Section B.2.1.

10

Proposition 5 (Theorem 2 in [BBL02]). Let K ⊂ Rn be a compact convex set. Let m ∈ [0,∞). Let
f ∈ Cm(K). Then for each positive integer k, there is a polynomial p of degree at most k on Rn such that

‖f − p‖∞ ≤
C

km

∑
|α|≤m

‖Dαf‖∞ (2.22)

where C depends on n and m.

Our ability to approximate a function efficiently will depend on the rapidity with which it varies,
as expressed by the magnitude of its derivatives. Accordingly, define for m ≥ 1 and q ∈ [1,∞] the
function-space balls

Bm,q,n := {f ∈ Cm(K) : ‖Dαf‖q ≤ 1 ∀|α| ≤ m}. (2.23)

The main result on the order of approximation of simple shallow networks is Proposition 6, which tells
us that approximating a function from Bm,∞,n using u neurons is order u−

m
n .

Proposition 6 (Theorem 6.8 in [Pin99]). Assume σ ∈ C∞(R) is not a polynomial. Then for all m ≥ 1,
n ≥ 2, u ≥ 1, we have

sup
f∈Bm,∞,n

inf
g∈SSNNun(σ)

‖f − g‖∞ ≤ Cu−
m
n . (2.24)

where C depends on n and m.

Proof. Let C1 be a a positive integer constant such that8 for all k ≥ 1 we have (k + 1)
(
n−1+k
n−1

)
≤ C1k

n.

We first consider the case in which (u
C1

)
1
n is an integer. Set k := (u

C1
)

1
n . Let w :=

(
n−1+k
n−1

)
. For any

polynomial p in n variables of degree less than or equal to k, we know that by Proposition B.3 that we
can write p as p(x) =

∑w
i=1 πi(〈x, ai〉) where a1, . . . , aw ⊂ Rn and where the πi are univariate polynomials

of degree less than or equal to k. By Proposition 2 each such univariate polynomial lies in cl SSNNk+1
1 (σ).

It follows that we can approximate p to arbitrary accuracy using SSNNw(k+1)
n . Thus letting Pk denote the

space of polynomials in n variables of degree less than or equal to k, we have

Pk ⊂ cl SSNNw(k+1)
n (σ) ⊂ cl SSNNC1k

n

n (σ) = cl SSNNu
n(σ). (2.25)

Thus

sup
f∈Bm,∞,n

inf
g∈SSNNun(σ)

‖f − g‖∞

≤ sup
f∈Bm,∞,n

inf
g∈Pk
‖f − g‖∞

≤ C2k
−m by Proposition 5 (C2 depends on m and n)

≤ C
m
n
1 C2u

−mn by choice of k. (2.26)

Note that the constants depend on m and n.

Now consider the case in which u > C1, but (u
C1

)
1
n is not an integer. Then let u′ := C1

(
b
(
u
C1

) 1
n c
)n

,

8For example, we can use the very loose bound (k + 1)
(n−1+k
n−1

)
≤ (k+1)(n−1+k)n−1

(n−1)!
≤

(k+1)
(
n−1+k
k

)n−1

(n−1)!
kn−1 ≤

d2 nn−1

(n−1)!
ekn.

11

which is an integer. We can bound u
u′ by

u

u′
=

1

C1

 u
1
n

b
(
u
C1

) 1
n c


n

=


(
u
C1

) 1
n

b
(
u
C1

) 1
n c


n

≤ 2n. (2.27)

We have

sup
f∈Bm,∞,n

inf
g∈SSNNun(σ)

‖f − g‖∞ ≤ sup
f∈Bm,∞,n

inf
g∈SSNNu

′
n (σ)
‖f − g‖∞

≤ C
m
n
1 C2

1

(u′)
m
n

by previous case

= C
m
n
1 C2

1

u
m
n

(
u

u′
)
m
n

≤ C
m
n
1 C22m

1

u
m
n

using bound from (2.27). (2.28)

Now consider the C1 − 1 cases in which u < C1. In these cases, note that since f ∈ Bm,∞,n, we have
‖f‖∞ ≤ 1 and we can simply take g = 0 and choose a sufficiently large constant.

Now we have proved the result for each of 1 + C1 cases, each with a different constant depending on
m and n. Taking the final C to be the maximum of these constants, we have the desired result.

Unlike in the analogous situation in Section 2.3.1, extending Proposition 6 to non-C∞(R) activation
functions is not straightforward. [Pin99, Corollary 6.10] quotes a result from [Pet98]:

Proposition 7. Let s ∈ Z+ and let

σ(t) :=

{
ts if t ≥ 0

0 otherwise
. (2.29)

Then if m ∈ {1, . . . , s+ 1 + n−1
2 }, we have

sup
f∈Bm,2,n

inf
g∈SSNNun(σ)

‖f − g‖2 ≤ Cu−
m
n (2.30)

where C depends on m and n.

This class of functions considered in Proposition 7 includes the Heaviside step function as well as the
popular ReLU(x) := max(x, 0). Unlike Proposition 6, the present proposition is limited to the L2 norm.
As we shall see in Section 2.4, Proposition 7 becomes false when L2 is replaced by L∞.

Remark 6.

1. Having upper-bounded the order of approximation by Cu−
m
n with Propositions 6 and 7, we might

ask for a corresponding lower bound. [Mai10, Theorem 1] shows that for p ∈ [1,∞], there is an f in
the Sobolev space Wm,p(K) (which can be thought of an the completion of Cm(K) under a certain
norm) such that the error of approximating f using a linear combination of u ridge functions is
bounded below by Cu−

m
n−1 . Since the functions representable as simple shallow neural networks are

a subset of the functions representable as sums of ridge functions, this by provides a lower bound
for approximation by simple shallow neural networks.

12

2. The results of this section and Section 2.3.1 are proven by transferring the approximation properties
of polynomials to simple shallow neural networks. On the one hand, the polynomials have many
desirable approximation properties, and so this is a reasonable approach. On the other hand, in
practice neural networks exhibit performance far exceeding any polynomial method. To justify this
performance it is necessary either to consider specific classes of functions on which neural networks
perform well (we shall do some of this in Section 2.4), or to look beyond approximation theory,
perhaps to the theory of generalization in machine learning.

2.4 The Approximation Benefits of Depth

2.4.1 The Number of Linear Regions of Deep and Shallow Networks

Most neural networks used successfully in practice are deep, but the most well-established neural network
theory pertains to shallow networks. Recently, attempts have been made to theoretically explain the
benefits of depth. While these attempts are diverse, many can be seen as instances of the same underlying
principle. The principle pertains to neural networks with piecewise linear activation functions, which we
call piecewise linear networks. It consists of the observation that a function induced by a deep piecewise
linear network can have many more linear pieces than one induced by a shallow piecewise linear network
with the same number of neurons.

One Dimensional Example

In the one dimensional case, the principle is demonstrated easily, as [Tel15] showed.

Proposition 8. Let f, g : [0, 1] → R be piecewise linear, with nf and ng pieces respectively. Then f + g
has at most nf + ng pieces.

Proof. This follows from the observation that each maximal interval over which f + g is linear has as
its left endpoint the left endpoint of a maximal interval over which f is linear or the left endpoint of a
maximal interval over which g is linear. Since there are at most nf + ng such left endpoints, we have the
desired result.

That is, simple shallow piecewise linear networks have a number of pieces linear in their number of
neurons. Now consider enlarging a piecewise linear network by making it deeper, which corresponds to
composing piecewise linear functions. Using the notation of the previous proposition, f ◦ g has at most
nfng pieces, which is achieved when the image of g over each of its maximal intervals of linearity intersects
all the intervals of linearity of f . That is, deep piecewise linear networks can have a number of linear
pieces exponential in their number of neurons.

The following example from [Tel15, Lemma 2.4] exhibits a function with a large number of linear pieces
that can consequently be approximated much more efficiently by deep piecewise linear networks than by
shallow piecewise linear networks.

Example 2. Define the mirror function m : [0, 1]→ [0, 1] by

m(x) =

{
2x if 0 ≤ x ≤ 1

2

2(1− x) if 1
2 < x ≤ 1

. (2.31)

Note that since m(x) = 2 ReLU(x)− 4 ReLU(x− 1
2) for x ∈ [0, 1], m is exactly representable by a simple

shallow neural network with ReLU activation (recall ReLU(x) = max(x, 0)).
For k ∈ Z+, define the sawtooth function sk : [0, 1] → [0, 1] as follows. For x ∈ [0, 1], let rk(x) :=

2kx− b2kxc. Then define

sk(x) := m(rk(x)). (2.32)

13

See Figure 2.2. We shall show that

sk = m ◦m ◦ . . . ◦m︸ ︷︷ ︸
k + 1 times

=: mk+1. (2.33)

The proof is by induction on k. The base case (s0 = m) is clear. Now assume that the result is true for
k. We shall prove it for k + 1. Note that mk+1 is clearly mirror symmetric about 1

2 . We also claim that
that sk is also mirror symmetric about 1

2 . To prove this, first consider the case in which 2k+1x is not an
integer9. We have

sk(1− x)

= m(rk(1− x))

= m(2k(1− x)− b2k(1− x)c)
= m(2k − 2kx− b2k(1− x)c)
= m(1 + b2k(1− x)c+ b2kxc − 2kx− b2k(1− x)c)
= m(1− rk(x))

= m(rk(x)) by mirror symmetry of m

= sk(x). (2.34)

Now consider the case in which 2kx is an integer. Then so is 2k(1− x), and thus

sk(1− x) = m(rk(1− x)) = m(0) = m(rk(x)) = sk(x), (2.35)

proving our claim that sk is mirror symmetric abour 1
2 . Since both sk and mk+1 are mirror symmetric

about 1
2 , it suffices to prove the result for 0 ≤ x ≤ 1

2 . We have mk+1 = sk−1 ◦ m by the inductive
assumption. Thus,

mk+1(x) = sk−1 ◦m(x) = sk−1(2x) = m(rk−1(2x))

= (2k−1(2x)− b2k−1(2x)c) = m(2kx− b2kxc) = m(rk(x)) = sk(x) (2.36)

as desired. This completes the induction and establishes (2.33).
We have exhibited sk as the composition of k + 1 copies of m, which we already know is exactly

representable as a simple shallow neural network with ReLU activation. Hence sk is exactly representable
by a (non-shallow) neural network with ReLU activation, depth 2(k+1), and a number of neurons linear in
k. In contrast, since sk has 2k+1 linear pieces, a shallow piecewise linear neural network requires O(2k+1)
neurons to exactly represent it, by Proposition 8. Furthermore, it is easy to show that the ∞-norm error
of approximating sk with too few linear pieces is lower bounded by a constant.

Extension Beyond One Dimension

The principle that deeper piecewise linear networks are more expressive than shallow piecewise linear
networks because they can have more linear pieces with the same neuron budget is explored in different
ways by numerous authors. [MPCB14, Mon17] extend the above analysis to n dimensions, drawing upon
the theory of hyperplane arrangements[S+04, Proposition 2.4] to show that a simple shallow neural network
with ReLU activation, input dimension n, and u hidden units can have at most

∑n
i=0

(
u
i

)
linear pieces,

which is polynomial in u. Since a deep neural network can have a number of linear pieces exponential in
the number of neurons, the analysis of [MPCB14] confirms that in n dimensions, deep piecewise linear
networks can have more linear pieces than simple shallow ones.

9We will use that if b ∈ Z++, 0 < a < b, and a is not an integer, then bb− ac+ bac+ 1 = b.

14

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: sk for k = 0, 1, 3

The above results do not address the question of whether deep neural networks’ many linear pieces
are actually useful for approximating typical functions. So far, we have only seen one rather pathological
function for which these many linear pieces are useful. [Yar17] attempts to address the issue with the
following results:

Proposition 9 ([Yar17, Theorem 6]). Let n ≥ 1. Let f ∈ C2([0, 1]n) be a non-affine function. Fix L > 2.
Let u > 2. Let g be a function induced by a simple neural network with ReLU activation, u neurons and
depth less than or equal to L. We must have

‖f − g‖∞ ≥ Cu−2(L−2) (2.37)

where C depends on f and L.

Proposition 10 (([Yar17, Theorem 1] and [Yar18, pg. 2])). Let m ≥ 1 and n ≥ 1. Let f ∈ Cm([0, 1]n).
Let u > 1 Then there exists a simple neural network with ReLU activation, u edges, and at most u neurons
inducing a function g that satisfies

‖f − g‖∞ ≤ Cu−
m
n (log u)

m
n (2.38)

where C depends on m and n.

Comparing Propositions 10 and 9, we see that deep ReLU networks have better order of approximation
than shallow ReLU networks when the function to be approximated is non-affine but very smooth (m is
large). The proofs of both propositions rely on the same principle: deep ReLU nets have more linear
pieces than shallow ones. To prove Proposition 9, the non-affine function f is locally approximated by a
quadratic, and then the minimum error of approximating a quadratic with a given number of linear pieces
is calculated. To prove Proposition 10, f is approximated by a piecewise polynomial, which is in turn
approximated by the neural network, where the neural network’s depth enables the high-degree terms of
the piecewise polynomial to be efficiently approximated by piecewise linear functions with many pieces.

The results of [Yar17] are suggestive, but also unsatisfactory, since the order of approximation of deep
ReLU nets in Proposition 10 is worse than that of shallow nets with smooth activations given in Proposition
6. Nevertheless, ReLU activations are the most commonly used activation functions in practice today,
likely because of their compatibility with optimization. It may be that Proposition 9 and 10 explain at
least part of power of depth for such networks.

15

Extension to Other Properties

In [Mon17], the author notes that the kind of analysis used to show that deep piecewise linear networks
can have exponentially many linear pieces can be applied to properties other than the number of linear
pieces. For example, one can show that deep ReLU neural networks can map exponentially many maximal
connected disjoint input regions to the same output value, whereas shallow ReLU networks cannot. Fur-
thermore, this analysis of the number of input regions mapping to the same output value can be extended
beyond ReLU networks to networks with certain smooth nonlinear activation functions. Thus by several
measures, deep neural networks are more complex than shallow ones.

2.4.2 Depth for Approximating Compositional Functions

An alternative to the approach of [Yar17], which compares the approximation power of shallow and deep
ReLU nets over very general classes of functions is that of [MP16], which studies the power of deep
networks for approximating functions with specific compositional structure.

Definition 11. Let (V,E) denote a directed acyclic graph with one output vertex. Let Q ⊂ R. Let
{Sd}d∈Z++

be a family of sets of functions such that all f ∈ Sd have domain Qd (i.e. the d-fold Cartesian
product of Q with itself) and range Q. Then define G({Sd}, (V,E), Q) to be the set of every function
representable by a computation graph with vertexes V and edges E such that for every vertex v ∈ V , the
corresponding vertex domain Dv, vertex range Rv, and vertex function cv satisfy

1. Rv = Q.

2. If v is a non-input vertex, then Dv = Q#in(v) and cv ∈ S#in(v).

3. If v is an input vertex, Dv = Q and cv is the identity.

G({Sd}, (V,E), Q) describes a set of functions induced by computation graphs with a given graph
structure whose vertex functions come from a given family. For convenience define indim(v) to be #in(v)
if v is not an input vertex and 1 if v is an input vertex.

Example 3. As a simple example, consider V := {V1, V2, V3, V4}, E := {(V1, V2), (V1, V3), (V2, V4), (V3, V4)},
Q = [0, 1], and Sd := {x 7→ σ1(〈x, a〉)}a∈Rd with σ1(x) := 1

1+exp(−x) and σ2(x) = x. Then G({Sd}, (V,E),

Q) includes (among other functions) squashed (into [0, 1]) versions of the one-dimensional simple shallow
neural networks on with 2 hidden units.

To handle some technicalities, we need some additional definitions. First, given σ : R → R and
[a, b] ⊂ R define SSNNγ

n(σ; [a, b]) by replacing each function f ∈ SSNNγ
n(σ) with the function formed

by restricting the domain of f to [a, b]n and post-composing f with min(max(·, a), b). Second, define
Bm,∞,d[0, 1] to be the restriction to [0, 1]d of those functions in Bm,∞,d mapping [0, 1]d to a subset of [0, 1].

Thus SSNNγ
d(σ; [0, 1]) and Bm,∞,d[0, 1] are sets of functions mapping [0, 1]d → [0, 1]. Note that the

functions in G({SSNNγ
d(σ; [0, 1])}d∈Z, (V,E), [0, 1]) could all be expressed with standard neural networks

as described in Section 2.2. However, expressing them in the manner of the present section reveals their
hierarchical structure: they are induced by computation graphs whose vertex functions are simple shallow
neural networks. The key result is the following.

Proposition 11 ([MP16, Theorem 2.1b]). Let (V,E) be a directed acylic graph. Let σ ∈ C∞(R). Let
m,n ≥ 1. Let ξ := maxv∈V indim(v). Let f ∈ G({Bm∞,d[0, 1]}d∈Z+

, (V,E), [0, 1]). Then for each γ > 0
there exists a g ∈ G({SSNNγ

d(σ; [0, 1])}d∈Z, (V,E), [0, 1]) such that

‖f − g‖∞ ≤ Cγ−
m
ξ . (2.39)

where C depends on m, n, and the graph (V,E) but not γ.

16

Proof sketch. Note first that by assumption all the vertex functions of f lie in Bm,∞,d for some d ≤ ξ, so
they are all Lipshitz with the same ∞-norm Lipshitz constant10 L := ξ. We will inductively construct
g. Let v ∈ V , and inductively assume that the vertex functions of g associated with vertexes preceding v
in topological order have already been chosen. Let d = indim(v). Let fv and gv be the vertex functions
of f and g respectively at v (we will specify gv below). Suppose both f and g have been fed the same
input, and let x1, . . . , xd ∈ [0, 1] and y1, . . . , yd be the values fed to fv and gv respectively by forward
propagation. For all 1 ≤ i ≤ d, inductively assume that |xi − yi| ≤ Ciγ

−mξ with Ci depending on m,n
and the graph structure (the base cases are clear, since if v is an input vertex, then xi = yi for 1 ≤ i ≤ d).
Then

|fv(x1, . . . , xd)− gv(y1, . . . , yd)|
≤ |fv(x1, . . . , xd)− fv(y1, . . . , yd)|+ |fv(y1, . . . , yd)− gv(y1, . . . , yd)|
≤ L(max

i
Ci)γ

−mξ + |fv(y1, . . . , yd)− gv(y1, . . . , yd)| By Lipshitz property and induction

≤ L(max
i
Ci)γ

−mξ + C ′γ−
m
d Choose gv and C ′ via Proposition 6

≤ (L(max
i
Ci) + C ′)γ−

m
ξ , (2.40)

completing the inductive step.
Thus by induction, at the output of the final vertex, f and g will differ by Cγ−

m
ξ where C depends

on m,n and the structure of the graph but not on γ, as desired.

Figure 2.3: If the target function f conforms to the above graph in the sense of Definition 11, then it
has input dimension 6, and so Proposition 6 guarantees only an O(u−

m
6) approximation using a shallow

neural network. If we use a neural network conforming to the same graph structure, then Proposition 11
guarantees us an improved O(u−

m
3) approximation, since the graph has maximal in-degree of 3.

Note that if we take u := (#V)γ then clearly ‖f − g‖∞ ≤ C(#V)
m
ξ u−

m
ξ . Thus if we have a neural

network whose structure conforms to the same graph as the true function we wish to estimate, then our
order of approximation is significantly improved compared to what we could achieve with a shallow neural
network, assuming ξ � n (compare with Proposition 6. See also Figure 2.3). This is an appealing result,
since it says that even if we have very high dimensional data, if the function we wish to approximate has
compositional structure corresponding to a graph with limited maximal in-degree, we can still get a good
order of approximation. It is natural to ask, however, what this tells us about neural networks in practice.

On the one hand, several aspects of Proposition 11 correspond to phenomena in real-world neural
network approximation. First, in many contexts it is reasonable to expect that that the functions we wish

10This follows since if fv is the vertex function for a vertex v with d = indim(v), then |fv(x)− fv(y)| = |〈∇fv(θ), y−x〉| ≤
‖∇fv(θ)‖1‖y − x‖∞ ≤ ξ‖y − x‖∞ for some θ on the line between y and x.

17

to approximate will be highly compositional. In computer vision, pixels combine to form edges, which form
contours, which form objects, which are parts of larger objects, etc. In audio analysis, the compositional
structure is less clear, but the author of [Bre94] has persuasively argued that local time/frequency patches
combine to form higher level auditory scene descriptors. Second, convolutional neural networks, the most
successful neural networks developed to date, consist of stacked layers of convolutions with very small
kernels. These small kernels correspond to a graph with a small maximal in-degree. Hence it is possible
that part of the performance of convolutional neural networks can be explained by the behavior described
by Proposition 11.

On the other hand, Proposition 11 requires the graph structure of the function to be approximated to
exactly match that of the approximating neural network. As Mhaskar and Poggio[MP16] note, Proposition
11 still holds if the graph of the approximating networks contains the graph of the target function as a
subgraph. This however, is insufficient. What is really needed is a result describing the ability of neural
networks to approximate functions with compositional structure similar to but not exactly matching their
own. Such a result remains to be discovered by cunning theoreticians.

2.5 Convolutional Neural Networks

Convolutional neural networks (ConvNets) are the most popular and powerful form of neural network
in use today. Like much of the key technology in the field of deep learning, they were developed in the
1980s[LCJB+89], but their popularity spiked when a convolutional neural network implemented on a pair
of GPUs won the 2012 ImageNet image recognition challenge[KSH12]. Broadly, a ConvNet is a type of
computation graph in which most vertexes receive as input and produce as output a tensor, and in which
a form of locality and spatial invariance is enforced on the vertex functions. For the purposes of this
essay, a tensor is an n-dimensional array of real numbers[KB09]. To simplify the explanation, we describe
ConvNets here in the case of two-dimensional convolutions applied to three-dimensional tensors, but their
extension to arbitrary dimension is simple. We begin by defining the convolutional layer, ConvNets’ key
vertex type. Table 2.1 provides a reference for the meaning of symbols pertaining to convolutional layers.

Definition 12. Let v be a vertex in a computation graph and let σ : R→ R. Call v a convolutional layer
with activation function σ if

1. There exist di, do,W,L ∈ Z++ such that v has vertex domain Rdi×L×W and vertex range Rdo×L×W .

2. There exist odd positive integers kW , kL and tensors {T 1, . . . , T do} ⊂ Rdi×kw×kL and a bias vector
b ∈ Rdo such that the vertex function cv : Rdi×L×W → Rdo×L×W is specified by

Ξv(A)i,jw,jl :=
∑

p,qw,ql∈Z
T ip,qw,qlAp,jw−qw,jl−ql + bi

cv(A)i,jw,jl := σ (Ξv(A)i,jw,jl)

(2.41)

where we use zero-padding boundary conditions for the tensors A and {T i}doi=1.

Although (2.41) is complicated, the underlying idea is simple: we convolve an input tensor with a
kernel, then apply the activation function entrywise. Figure 2.4 illustrates a simple example.

Because of their practical utility, many variant ConvNet architectures have been developed, some of
which include special layers types. See Section C for a description of some of these layer types.

2.5.1 ConvNet Definition

Definition 13. Let σ : R → R. A computation graph is called a convolutional neural network with
activation function σ if all its vertexes are either (a) convolution layers with activation function σ or the
identity, or (b) one of the layer types of Section C.

18

Symbol Meaning

di input channels
do output channels
W input width
L input length
kw width kernel size
kl length kernel size
b bias vector

{T 1, . . . , T do} weight tensors

Table 2.1: Symbols in definition of convolutional layer

Remark 7.

1. Given a tensor A ∈ Rd×W×L, the matrices A1,:,:, . . . , Ad,:,: (using MATLAB notation) are called the
channels of A. Each channel of the output tensor of a convolutional layer is the result of applying
a separate convolution to the input tensor.

2. The operation described in (2.41) can be applied to N input tensors simultaneously via the mul-
tiplication of a do × diklkw matrix by a diklkw × NLW matrix[CWV+14, Section 3]11. Because
GPUs specialize in tasks which like the multiplication of large dense matrices involve a high ratio of
floating point operations to memory accesses, convolutional layers are efficiently implementable on
GPUs.

3. Originally designed for image processing, ConvNets are now used to solve diverse problems from
numerous fields. For example, in machine translation, convolutional neural networks have begun to
out-perform recurrent neural networks, which were previously believed to be optimal for sequence
data[GAG+17].

4. Convolutional layers enforce spatial invariance by applying the same transformation to every patch
of the input tensor. Besides decreasing the number of parameters that need to be learned, this
invariance also serves as a reasonable constraint for many problems of interest. The clearest example
comes from image processing, in which displacing an object in an image does not affect what the
object is.

5. Although the theory of deep ConvNets is less well developed than the theory of general deep neural
networks described in Section 2.4, we can still draw from the general theory for insight about the
behaviour of ConvNets. For instance, we could argue using the effect described in Section 2.4.1 that
deep piecewise linear ConvNets can have more linear pieces than shallow ones. Such an argument
would need to take into account that convolutional layers can only represent convolutions, not
arbitrary linear transformations, but I do not expect this would prove a fudamental impediment.

We could also draw on theory of Section 2.4.2, arguing that ConvNets resemble the hierarchical neural
networks of that section. If kl and kw are small, then each entry of an output tensor produced by
a convolutional layer depends on only a small number of entries in the input tensor. Hence any
function induced by a convolutional neural network can be rewritten in the form of Section 2.4.2
where all vertexes have small indegree. The correspondence between convolutional and hierarchical
neural networks is not perfect, as general ConvNets do not allow an arbitrarily wide shallow network
to operate on each patch of the input tensor as required by Proposition 11. However, a ConvNet in
which many different convolutional layers operate on the same input tensor and the output tensors

11The second matrix is usually formed lazily to conserve memory.

19

0 0 1 1

1100

0 0 1 1

0000

-1 8

-1-1

-1 -1 -1

-1

-1

0

1

1

1

11100

A

T1

(A)Ξ
v

0 -3 3 0

03-30

0 -2 5 3

-3-2-10 -2

5

3

3

535-20

(A)C
v

0 0 3 0

0300

0 0 5 3

0000 0

5

3

3

53500

Figure 2.4: The action of a convolution layer on an input tensor A. The convolutional layer has di = do = 1,
W = L = 5, kw = kl = 3, b = 0, and activation function ReLU(x) := max(x, 0).

produced by these layers are combined with a sum layer (see Section C) can more closely mimic the
effect described in Section 2.4.2.

Definition 14. A ConvNet architecture is a directed acyclic graph (V,E) together with an assignment of
a layer type (see Definition 12 and Section C) to each vertex v ∈ V , and a specification of all parameters of
each layer except for the weight tensors of convolutional layers and the weight matricies of fully-connected
layers.

Thus, a ConvNet architecture generates a family of ConvNets, each of which is specified by selecting
weight tensors for each each convolutional layer and a weight matrix for each fully-connected layer (here
we include the bias vector b as a weight tensor).

Example 4. As an example, consider the variant of the LENet architecture[LBBH98] shown in Figure
2.5. The architecture has domain RIL×Iw and range RD, and consists of 3 convolutional layers followed
by a flattening layer, a fully connected layer, and a softmax layer (see Section C). To get a convolutional
neural network from the architecture, one must specify the weight tensors for the convolutional layers and
the weight matrix for the fully connected layer.

2.6 Machine Learning

So far we have described neural networks as tools for approximating known functions. In most practical
problems we do not know the function we wish to approximate, but have a limited number of observations

20

Figure 2.5: Modified LENet architecture. See Section C and Section 2.5 for layer types.

of its input and output. The machine learning framework was built to describe such problems. In Section
2.6.1 we outline the machine learning framework, and then in Section 2.6.2 we explain how it can be
combined with the convolutional neural networks of Section 2.5.

2.6.1 The Machine Learning Framework

Since the machine learning framework is abstract, we begin with a concrete example.

21

Example 5. A medical scientist has measured the concentrations of various lymphocyte (white blood
cell) types for each patient in a cohort of patients with family history of a certain autoimmune disease.
Let X := Rn+ denote the space of possible measurements, where for x ∈ X , xi is the concentration of the
ith lymphocyte type. The medical scientist also recorded which patients ended up getting the disease.
Let Y = {1, 2} be the set of possible patient states, where 1 indicates that a patient has the disease and
2 indicates that they do not. Furthermore let S ⊂ X × Y be the finite set of measurement-state pairs
found in the scientist’s cohort data. S is called the training set. The scientist wishes to use this data
to predict in advance which new asymptomatic patients will fall ill. Prior research has determined that
the probability that a patient with a faimly history of the disease and a lymphocyte profile x ∈ X will

get the disease is given by the probability rule p1(x; (w, b)) = exp(〈x,w〉+b)
1+exp(〈x,w〉+b) for some w ∈ Rn, b ∈ R, and

correspondingly the probability that they will not get the disease is p2(x; (w, b)) := 1− p1(x; (w, b)). Thus
the possible probability rules are parameterized by H := {(w, b)| w ∈ Rn, b ∈ R}. The scientist’s problem
is to determine the correct (w∗, b∗) ∈ H. Let S ⊃ S denote the set of all patients in the world with
family history of the disease. Conceptually, according to the statistical principle of maximum likelihood,
it might be reasonable for the scientist to expect the correct (w∗, b∗) ∈ H to maximize the joint probability
of S, which is

∏
(x,y)∈S py(x; (w, b)). The scientist does not have access to S, and so she must make do

with the training set S, finding (w∗, b∗) by maximizing
∏

(x,y)∈S py(x; (w, b)), or equivalently minimizing∑
(x,y)∈S − log(py(x; (w, b))).

We now introduce the abstract framework. Following [SSBD14, chapter 2-3], a machine learning
labeling problem consists of (i) a domain set X , all possible objects the algorithm may need to label; (ii) a
label set Y, all possible labels; (iii) a hypothesis class H, a parameterization of the valid labeling rules;
(iv) a training set S, a finite set of pairs12 {(xi, yi)} from X ×Y; (v) a loss function l : H×X ×Y → R+,
where l(h, x, y) measures how undesirable it is to use labeling rule corresponding to h on an object x
whose true label is y. We seek an h∗ ∈ H that will perform well according to l not only on the training
set S, but on some yet-unseen data.

Symbol Meaning

X domain set
Y label set
H hypothesis class
S training data or training set
l loss function
R regularizer

Table 2.2: Symbols in the machine learning framework

The most common rule for selecting h∗ ∈ H is

h∗ ∈ argmin
h∈H

1

#S
∑

(x,y)∈S

l(h, x, y). (2.42)

That is, we choose a hypothesis that yields the lowest average loss on the training data.
When applying the machine learning framework, we must choose H and l such that solving (2.42) is

both (a) tractable, and (b) yields an h∗ such that L(h∗, x, y) is low for pairs (x, y) /∈ S we are likely to
encounter.

Example 5 (continuing from p. 21). In the scientist’s example, l((w, b), x, y) := − log(py(x; (w, b))) up to
a scaling factor.

12The individual (x, y) ∈ S are called training examples or datapoints.

22

2.6.2 Machine Learning with Convolutional Neural Networks

In this section we narrow our focus to machine learning problems for which the domain set X consists
of tensors: X ⊂ Rd×W×L. We can generate a hypothesis class for such a problem using a ConvNet
architecture with domain Rd×W×L (see Definition 14) by letting the hypotheses be assignments of weight
tensors and weight matrices to the convolutional and fully connected layers of the architecture. Each such
hypothesis h ∈ H converts the ConvNet architecture into a ConvNet and induces a function fh. Since our
intent is to label elements of X with labels from Y, we consider only architectures whose last layer is a
#Y-dimensional softmax (see Definition C.7). Such architectures have range ∆Y+, the positive probability
distributions over Y.

Example 6. A historian has recently obtained a cache of handwritten historical documents. The historian
wishes to identify which of these documents were written by a particularly intriguing viscount. The
historian decides to apply machine learning with convolutional neural networks. Having been apprised
of Yann LeCun’s famous work on handwritten digit recognition, the historian decides to use LENet as
his convolutional architecture (see Example 4 and Figure 2.5). He will feed the architecture greyscale
images of the documents, so that the domain set is X := RW×L where W and L are the pixel dimensions
of the images. As the historian is only interested in whether or not each document was written by the
viscount, we have that the label set is Y := {1, 2} where 1 indicates the document was written by the
viscount and 2 indicates that it was not. The historian spends his research grant paying graduate students
to painstakingly analyze a subset of the documents by hand. The product of this labour is S ⊂ X × Y,
a training set consisting of labeled documents. Each hypothesis in the hypothesis class H is a choice of
weight tensors for the convolutional layers and a weight matrix for the fully connected layer of LENet.
Since the LENet architecture ends with a softmax (see Definition C.7), the convolutional neural networks
associated with the hypothesis class map each greyscale image of a document to a probability distribution
over whether or not that document was written by the viscount.

As we saw in Example 5, one approach to devising a loss function function is via the statistical principle
of maximum likelihood. Because every hypothesis h is associated with a function fh : X → ∆Y+ mapping
tensors to probability distributions over labels, we can compute the probability according to any h ∈ H
of observing the training data, under the assumption that the labels of the training examples are drawn
independently. This probability is

∏
(x,y)∈S

(fh(x))y. (2.43)

The maximum likelihood principle says that we should select the hypothesis according to which the
training set S is most likely. That is, we should chose h∗ to maximize (2.43) or, equivalently, choose h∗

satisfying

h∗ ∈ argmin
h

∑
(x,y)∈S

− log(fh(x))y. (2.44)

The form of (2.44) suggests the loss function

l(h, x, y) = − log(fh(x))y. (2.45)

23

Chapter 3

Optimization for Practical
Convolutional Neural Networks

3.1 Introduction

This section discusses optimization for the application of convolutional neural networks to practical ma-
chine learning problems.

3.2 Optimization Algorithms

According to Section 2.6.2, we should select a hypothesis h∗ ∈ H solving

h∗ ∈ argmin
h

1

#S
∑

(x,y)∈S

l(h, x, y), (3.1)

where each h ∈ H is an assignment of weight tensors and matrices to a ConvNet architecture (see Definition
14). For convenience, in this section we flatten1 all these tensors and matrices so that hypotheses are
column vectors: H ⊂ RdH for some dH . A standard optimization approach to (3.1) is gradient descent2,
according to which we select some initial guess h0, and then in each iteration i update

hi = hi−1 − 1

#S
αi∇h

∑
(x,y)∈S

l(h, x, y) (3.2)

for learning rates {αi}∞i=1 ⊂ R++. This process of iteratively searching for the optimal h ∈ H is called
training.

In many machine learning problems, #S is very large, and consequently gradient descent is slow, since
∇hl(h, x, y) needs to be computed for each (x, y) ∈ S in every iteration. To address this issue, researchers
developed variants of gradient descent known as stochastic gradient descent (SGD) and minibatch gradient
descent (MGD). In iteration i of SGD, we sample (xi, yi) ∈ S uniformly at random and update

hi = hi−1 − αi∇hl(h, xi, yi). (3.3)

1To flatten a tensor means to rearrange its entries into a column vector. That is, we replace elements of Rd1×d2×...×dn
with elements of Rd1d2...dn (for some d1, d2, . . . , dn).

2Several popular activation functions like ReLU are not differentiable at certain isolated points. One generally replaces
the derivative with its left or right limit in these cases.

24

In iteration i of MGD, we sample Si ⊂ S of fixed sized Q := #Si uniformly at random and update

hi = hi−1 − 1

Q
αi

∑
(x,y)∈Si

∇hl(h, x, y). (3.4)

Remark 8. For many machine learning problems, SGD and MGD with small Q empirically require less
time and computation than gradient descent to achieve the same accuracy, and are preferred. There is no
single definitive explanation for this superior performance. Here are a few arguments.

1. Typical machine learning training sets contain many very similar training examples. Gradient de-
scent requires computing ∇hl(h, x, y) for each of these examples each iteration, and is thus highly
redundant. In contrast with SGD and MGD only a relatively small number of evaluations of
∇h log(fh(x))y are performed before h is changed, limiting redundancy.

2. [BCN18, Theorem 4.7] theoretically compares the rate of convergence of SGD and gradient descent
when l is strongly convex in h. While strong convexity is a wildly unrealistic assumption for a neural
network, if the network has a smooth activation function and a positive definite Hessian at a local
minimum, it is strongly convex in a neighborhood of that minimum. Thus the rate of convergence
analysis of [BCN18] applies in such a neighbourhood. The authors of [BCN18] show that under
their assumptions, stochastic gradient descent requires a number of iterations of order 1

ε to achieve
ε optimality. In contrast, gradient descent requires order log(1

ε) iterations[B+15, Theorem 3.12].
Since each iteration of gradient descent involves computing the gradient at #S training datapoints,
the ratio of the work required to achieve ε-optimality with gradient descent to the work required to
achieve the same optimality with SGD is (#S)ε log(1

ε). This ratio favors gradient descent for small
ε, but favors SGD in the when ε is moderate and #S is very large. This latter situation in common
in machine learning.

Remark 9. Some additional comments:

1. The above comparison of gradient descent with SGD also applies to MGD when Q � #S. Re-
searchers tend to prefer MGD to SGD because it offers greater opportunities for parallelization3.

2. It is common[GBCB16, pg. 293] to replace (3.4) with

vi = ρvi−1 +
1

Q

∑
(x,y)∈Si

∇hl(h, x, y) (3.5)

hi = hi−1 − αivi, (3.6)

where 0 < ρ < 1. This procedure is known as mini-batch gradient descent with momentum. It is
intuitively justified by the observation that it tends to amplify the change in {hi} in a direction if
many recent gradients agree about the value of a direction, while it tends to dampen the change in
{hi} in a direction if recent gradients disagree. Theoretical arguments for the benefits of momentum
are scare, but it often speeds convergence in practice.

3.3 Batch Normalization

Nearly all modern convolutional neural networks use a very effective heuristic called batch normalization[IS15].
We will explain batch normalization in the context of minibatch gradient descent (see Section 3.2) applied

3MGD is also more stable than SGD, but SGD’s stability can be improved by appropriately scaling down the learning
rates relative to MGD.

25

to a convolutional neural network. Let the minibatch size be Q, and consider a convolutional layer accept-
ing input tensors with di channels, width W , and length L (see Section 2.5). Let A1, . . . , AQ ∈ Rdi×L×W
be the Q input tensors passed to the convolutional layer by forward propagation (see Section 2.1) as the
ConvNet is applied to the Q datapoints in a minibatch. Define the statistics µ, λ2 ∈ Rdi by

µk =
1

WLQ

Q∑
q=1

W∑
jw=1

L∑
jl=1

Aqk,jw,jl (3.7)

λ2k =
1

WLQ

Q∑
q=1

W∑
jw=1

L∑
jl=1

(Aqk,jw,jl − µi)
2. (3.8)

To apply batch normalization to the convolutional layer, we normalize its input using these mini-
batch statistics. Instead of directly passing {A1, . . . , AQ} to the convolutional layer, we instead pass
{(A1)′, . . . , (AQ)′} defined by

(Aq)′k,:,: = αk(Aqk,:,: − µk)/λk + βk, (3.9)

where we have used MATLAB notation, and where α, β ∈ Rdi are new trainable parameters (thus we
expand the hypothesis class by introducing batch normalization). In essence we are normalizing the input
tensors to the convolutional layer so that each channel has mean 0 and variance 1 over the minibatch, and
then applying a learnable affine transformation specified by α and β. When training is complete and the
ConvNet must be applied to test data, µ and λ2 can be fixed at a weighted average of their values over
the last iterations of training. Batch normalization violates the formal framework described previously,
because it introduces dependencies between the ConvNet’s output at different datapoints in a minibatch.
Nevertheless, it is very effective4.

Despite its effectiveness, batch normalization is poorly understood. One popular theory of is that
of “reducing internal covariate shift”, which claims that batch normalization improves optimization by
ensuring that changes in the weights of earlier layers during optimization do not alter the input distri-
bution seen by subsequent layers too dramatically. According to this theory, batch normalization makes
the training of different convolutional layers more independent by controlling the distribution of their
inputs. The authors of a recent working paper, [STIM18], present experimental evidence contradicting
the internal covariate shift theory. Some of their experiments even suggest that the input distribution
seen by convolutional layers during optimization varies more with batch normalization than without. The
authors of [STIM18] use further experiments and theoretical analysis of simplified examples to claim that
batch normalization actually works by making the gradient of the loss function more Lipshitz, and thus
more informative to the optimization algorithm. If this claim is borne out by future work, it may finally
provide a foundation for a deeper understanding of batch normalization.

4Examples abound. The original batch normalization paper[IS15] demonstrates on standard image classification bench-
marks that convolutional neural networks with batch normalization achieve a higher maximum accuracy and require less
training time than ConvNets without batch normalization. Also, batch normalization is a key component of the celebrated
ResNet[HZRS16].

26

Chapter 4

Audio Processing

4.1 Introduction

I participated in the 2018 DCASE Freesound General-Purpose Audio Tagging Challenge[FPF+18] hosted
on Kaggle. Participants were asked to train an algorithm on a training set of labeled sound clips so
that it could accurately label previously unseen sound clips. A standard deep learning approach to this
problem is to apply a convolutional neural network to the log spectrograms of the sound clips. I adopted
this approach. In this section I justify and describe the short-time Fourier transform, from which the log
spectrogram is derived.

4.2 How the Ear Processes Sound

Sounds are pressure waves. When a pressure wave reaches a human ear, it causes the eardrum to vibrate.
This vibration is transmitted via a sequence of bones to the cochlea, where it propagates through the
cochlear fluid to a structure known as the basilar membrane, different parts of which are sensitive to
different frequencies. The frequency-dependent movement of the basilar membrane is transmitted to hair
cells, which convert it to electrical impulses, which eventually reach the brain (for more, see Chapter 2 of
[SNK11]). This time-varying decomposition of sound into constituent frequencies is the key characteristic
of the human auditory system. Thus if we hope to develop an audio classification system partly inspired
by how humans process sound, time-frequency decomposition is a good starting point.

4.3 The Short-Time Fourier Transform

The fundamental time-frequency decomposition is the short-time Fourier transform (STFT), which we
introduce in this section. Before proceeding, we establish additional notation.

In this section, we will use brackets instead of subscripts to refer to components of vectors in Cn and
matrices in Cn×n. We use the usual inner product: if f1, f2 ∈ CN then 〈f1, f2〉 =

∑N−1
j=0 f1(j)f2(j) and

if s1, s2 ∈ CN×N then 〈s1, s2〉 =
∑N−1
k=0

∑N−1
j=0 s1(k, j)s2(k, j) where x denotes the complex conjugate

of x. Use the usual norm ‖f‖ =
√
〈f, f〉. Use periodic boundary conditions, so that for f ∈ CN , we

have f(x + jN) := f(x) for all j ∈ Z. For f1, f2 ∈ CN , define their convolution by (f1 ∗ f2)[t] =∑N−1
t′=0 f1(t′)f2(t− t′). Let i ∈ C denote the imaginary unit. Let φ0, . . . , φN−1 ∈ CN denote the standard

Fourier basis: φj(k) = 1√
N

exp(2πi jkN). Define the Fourier transform F : CN → CN by

F [f](j) = 〈f, φj〉. (4.1)

27

We have Parseval’s formula: for all f1, f2 ∈ CN , 〈F(f1),F(f2)〉 = 〈f1, f2〉. For t, ω ∈ {0, . . . , N −1} define
the translation operator T by Tt[f](j) = f(j − t), and the modulation operator by Mω[f](j) = φω(j)f(j).
Note that for h ∈ CN we have

F [Tth](ω) =
1√
n

N−1∑
t′=0

h(t′ − t) exp(−2πi
ω

N
t′) =

1√
n

N−1∑
τ=0

h(τ) exp(−2πi
ω

N
(τ + t)) =

√
nM−tF [h](ω)

(4.2)

where we used the change of variable τ = t′ − t. Analogously,

F(Mδh)[ω] =
1

n

N−1∑
t′=0

exp(2πi
δ

N
t′)h(t′) exp(−2πi

ω

N
t′) =

1

n

N−1∑
t′=0

h(t′) exp(−2πi
ω − δ
N

t′) =
1√
n
TδF [h](ω).

(4.3)

We can now proceed to the short-time Fourier transform. Let f ∈ CN be a time-domain signal
consisting of N measurements of the amplitude of a sound, where consecutive measurements are separated
by equal time intervals (in every practical case, f ∈ RN , but it is mathematically natural to use CN).
We are interested in the frequency decomposition of f over short time periods. We shall use the window
function g ∈ CN to specify the time periods in which we are interested. Then the value of S[f, g], the
short-time Fourier transform of f with respect to g, at time and frequency t, ω ∈ {0, . . . , n− 1} is defined
by

S[f, g](t, ω) :=
1√
N

N−1∑
t′=0

f(t′)g(t′ − t) exp(−2πi
ω

N
t′). (4.4)

Thus S[f, g] ∈ CN×N . To get some insight into the STFT, we establish Proposition 12 .

Proposition 12 ([Grö13, Lemma 3.1.1]). For f, g ∈ CN and t, ω ∈ {0, . . . , N − 1} we have

S[f, g](t, ω) = F(fTtg)(ω) (4.5)

= exp(−2πi
ω

N
t)(f ∗Mω ğ)(t) (4.6)

= 〈f,MωTtg〉 (4.7)

= 〈F [f], TωM−tF [g]〉 (4.8)

where ğ(t) := g(−t).

Proof. (4.5) and (4.7) are immediately clear from (4.4). (4.6) becomes obvious when the definitions of
convolution and ğ are substituted. (4.8) follows from (4.7) when Parseval’s formula, (4.2), and (4.3) are
applied.

Remark 10. (4.5), (4.6), and (4.7) are sometime called the “3 souls” of the short-time Fourier transform[EDM13].
They reveal three different ways to understand it. Assume that the window function g is real, symmetric
about 0, nonnegative, and supported on a set of size much smaller than N . Then (4.5) provides a time
viewpoint, showing that the short-time Fourier transform can be computed by decomposing the signal f
into its constituent frequencies over each of the small time windows specified by pointwise multiplication
by translations of g. (4.6) provides a frequency viewpoint, showing that the short-time Fourier transform
can also be computed by convolving a signal f with the modulations of g. Finally, (4.7) exhibits a linear-
algebraic interpretation of the short-time Fourier transform: one computes it by taking the inner product
of the signal f with each of the translations and modulations of the window function g.

28

−2000 −1000 0 1000 2000
t

0.0

0.2

0.4

0.6

0.8

1.0

m
ag

ni
tu
de

−400 −200 0 200 400
ω

0

250

500

750

1000

1250

1500

1750

2000

m
ag

ni
tu
de

Figure 4.1: The boxcar window (top) and its Fourier transform (bottom). Normalization differs from text.

Remark 11. By (4.7), if g is concentrated around 0, then the value of S[f, g](t, ω) depends on the value
of f only in a small neighborhood of t. (4.8) reveals the corresponding result on frequency concentration:
if F [g] is concentrated around 0 then S[f, g](t, ω) depends only on F [f] in a small neighborhood of ω.

Thus the time and frequency resolution of the short-time Fourier transform depends on the time and
frequency concentration of the windowing function. Our goal is to break a time-domain signal down into is
frequency components over small time intervals. We should thus choose a window with small time support,
but which is also relatively concentrated in frequency. An obvious first choice, the scaled characteristic
function χI of a small interval (called the boxcar window) fails the second criteria (see Figure 4.1). The
Hann window has better frequency localization, and thus is a better choice (see Figure 4.2). All of my
models use the Hann window.

4.4 Practical Considerations

This section describes modifications to the short-time Fourier transform used in practical implementations.

4.4.1 The Sub-Sampled Short-Time Fourier Transform

Since S[·, g] is a linear transformation from CN to CN×N , the time-frequency grids it outputs are highly
redundant. We can make the STFT more efficient by eliminating some this redundancy. Let g be supported
on a interval of size L < N , and assume for convenience that L divides N . Take α ∈ Z++ with α ≤ L.
Then the sub-sampled short-time Fourier transform is defined by

Sα,L[f, g](t, ω) =
1√
N

N−1∑
t′=0

f(t′)g(t′ − αt) exp(−2πi
ω

L
t′) (4.9)

29

−2000 −1000 0 1000 2000
t

0.0

0.2

0.4

0.6

0.8

1.0

m
ag

ni
tu
de

−400 −200 0 200 400
ω

0

250

500

750

1000

1250

1500

1750

2000

m
ag

ni
tu
de

Figure 4.2: The Hann window (top) and its Fourier transform (bottom). Normalization differs from text.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

no
rm

al
ize

d
am

pl
itu

de

Figure 4.3: Raw amplitude plot of a guitar string pluck. Sample rate is 44.1 kHz.

30

0 0.5 1 1.5 2 2.5 3 3.5 4
time(s)

0

2500

5000

7500

10000

12500

15000

17500

20000

Hz

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

+10 dB

+20 dB

+30 dB

Figure 4.4: The magnitude short-time Fourier transform of a pluck of a guitar string. Sample rate is 44.1
kHz.

for 0 ≤ t < dNα e and 0 ≤ ω ≤ L. This version of the sub-sampled short-time Fourier transform uses only a
subset of the times and frequencies in the original STFT. Nevertheless, it is invertible, since it amounts to
covering {0, . . . , N−1} with overlapping length L intervals and then storing the L-point Fourier transforms
of f windowed by g on these intervals.

The contest audio is sampled at 44.1kHz. I use the sub-sampled STFT with α = 441 (10ms) and
L = 1323 (30 ms).

4.4.2 Further Memory Savings

When the Fourier transform is applied to a real signal f ∈ Rn, half of the output components can be
discarded, since

F [f](n− k) =
1√
n

n−1∑
j=0

f [j]exp(−2πij
n− k
n

) =
1√
n

n−1∑
j=0

f [j] exp (2πij) exp (−2πij
k

n
) = F [f](k). (4.10)

Since computing the short-time Fourier transform involves repeated computation of the Fourier transform
of real signals, this technique can be used to save memory.

Also, experience has demonstrated that the most practically useful information is in magnitudes, not
the phases of the short-time Fourier transform. Thus it is conventional to discard phase information. The
magnitude of the short-time Fourier transform of a signal is known as its spectrogram.

To reduce the size of the data that must be processed, it is common to shrink the spectrogram of a
sound clip by binning its frequencies. Instead of using bins of fixed frequency width, bins of fixed width
in the mel scale are used. The mel scale is linear in frequency below a certain critical frequency (1kHz in
the implementation I use[MRL+15]) and logarithmic in frequency above that critical frequency. The mel
scale was designed so that pitch intervals perceived by humans to have equal width have approximately
equal mel width. Typically, one can attain an approximately tenfold reduction in spectrogram size using
this method.

4.4.3 Log Magnitude

Finally, human perception of loudness is modeled better by a logarithmic scale than by a linear scale. For
this reason, my submission to the DCASE Audio Tagging Challenge makes use of the log spectrograms of
the sound clips.

31

Chapter 5

Freesound General-Purpose Audio
Tagging Challenge

Participants in the 2018 DCASE Freesound General-Purpose Audio Tagging Challenge[FPF+18] were
given a training dataset of 9474 sound clips ranging in duration from 0.3 seconds to 30 seconds (see Figure
5.1). Each training clip was labeled with one of 41 labels (see Section D). Participants aimed to train
machine learning algorithms on the training dataset so that they performed well on held-out test clips. I
submitted an ensemble of deep convolutional neural networks, which scored 13th of 558 submissions by
individuals and teams. In this section, I explain my submission. See Figures 5.9 and 5.10 for overviews
the training and testing pipelines (I describe the details of these pipelines in the subsequent sections of
this chapter).

5.1 Why it is Reasonable to Apply Convolutional Neural Net-
works to Spectrograms

As mentioned in Section 4, my convolutional neural networks accepted as input the (log) spectrogram
of the sound clips. One might ask why this is a reasonable approach, given that convolutional neural
networks were originally designed for image processing. While part of the answer to this question is
“because it works”, there are also more satisfying explanations of why convolutional neural networks can
be effectively applied to spectrograms.

Speaking generally, both image classification and sound classification are hard pattern recognition
problems. To correctly label images of buses, an image recognition algorithm must identify different types
of buses from different angles and with different levels of occlusion. Similarly, to correctly label the sounds
of buses, a sound classification algorithm must identify the sounds of different types of buses mixed with
various interfering background noises. Deep neural networks specialize in this type of problem, in which
classification must be invariant to irrelevant transformations of the data (recall from Section 2.4.1 that
deep neural networks can map many disjoint input regions to the same output).

More specifically, the rules by which the brain analyzes a visual scene in some ways resemble the
rules by which it analyzes an auditory scene. [Bre94, Chapter 1] gives examples, which I repeat here.
All else being equal, the brain tends to group nearby regions of an image as corresponding to the same
object. An experiment demonstrates an analogous phenomon in auditory scene analysis of time-frequency
space. In the experiment, the experimenters play the tones H1L1H2L2H3L3H1L1H2L2H3L3 . . . where
the Hi denote high frequency tones and the Li low frequency tones. There are two ways the subjects
can hear these tones: either as a single sequence alternating between high and low tones, or as two
separate simultaneous sequences, one of high tones and one of low tones. In the later case, attention can

32

0 5 10 15 20 25 30
duration (s)

0

500

1000

1500

2000

2500

3000

3500
nu

m
be

r o
f c

lip
s

Figure 5.1: Durations of Clips in the training set for the 2018 DCASE Freesound General-Purpose Audio
Tagging Challenge. Sample rate is 44.1 kHz.

only be focused on one sequence at a time, and the other is perceived as what the author of [Bre94] calls
“vague background”. Experimenters found that either increasing the speed of alternation or increasing the
frequency separation between the high and low tones made listeners more likely to perceive two separate
sequences (see Figure 5.2). This result reveals a tendency of the brain to group together sounds that are
nearby in time-frequency space, just as it groups together nearby regions of an image.

Another example of a rule used by the brain in both auditory and visual scene analysis is that of
masking. According to this rule, two disjoint regions are more likely to be perceptually grouped if there
is evidence that intervening information has been lost. In the case of images, this rule manifests as the
familiar logic of occlusion. In the case of auditory scenes, the rule can be demonstrated by experiment.
If a listener is played two isolated sounds separated by a gap of silence, the listener is likely to perceive
the sounds as separate. However, if the the gap of silence is filled with white noise that could mask a
continuous connection between the isolated sounds, then the isolated sounds may be grouped together and
perceived as a single auditory phenomenon. The listener may even incorrectly perceive that phenomenon
continuing through the noise. See Figure 5.3. Thus the brain uses the same sort of reasoning about
masking in its analysis of images and sounds.

One could list more similarities between auditory and visual scene analysis, and interested readers are
referred to [Bre94]. Note that there are clearly also many differences between how the brain analyses au-
ditory and visual information. Nevertheless, for our purposes, the existence of some important similarities
is sufficient. If you believe that convolutional neural networks are an effective tool for image processing
in part because they can learn some of the analysis rules applied to images by the human brain, then it
is reasonable to believe that convolutional neural networks will be an effective tool for audio processing,
since the brain applies some of the same analysis rules to time-frequency space.

33

time

fre
qu

en
cy

time

fre
qu

en
cy

Figure 5.2: Upon hearing the sound described by the top diagram, listeners are likely to perceive two
separate sequences of tones, one high and one low. Upon hearing the sound described by the bottom
diagram, listeners are likely to perceive a single sequence of tones alternating between high and low.

time

fre
qu

en
cy

time

fre
qu

en
cy

Figure 5.3: A diagram illustrating the masking phenomon. Upon hearing the sound described by the
top diagram, the listener perceives two separated frequency glides. Hearing the sound described by the
bottom diagram, he or she may perceive only one long frequency glide with some background noise in the
middle.

5.2 Architectures

I used two main convolutional neural network architectures: ResNet[HZRS16] and Progressive NASNet[LZS+17].

34

5.2.1 ResNet

The computation graph of a ResNet (Figure 5.4) consists of stacked subgraphs called residual units
(Figure 5.5). A residual unit accepts a single tensor as input. That tensor is passed along two paths: a
convolutional path and an identity path. The outputs of the convolutional and identity paths are added
to produce the output of the residual unit. The convolutional path consists of series of convolutional
layers with batch normalization (see Figure 5.6), while the the identity path merely performs the identity
operation: its input is connected directly to its output.

ResNet and ResNet-like architectures have been ubiquitous since a team from Microsoft Research Asia
used ResNets to win 1st place in the 2015 Imagenet classification, Imagenet localization, COCO detection,
and COCO segmentation challenges[HZRS16]. Below I list a few of the various explanations for ResNet’s
performance that have been offered.

Identity

The authors of [HZRS16] originally motivated ResNets with the observation that increasing the depth
of a convolutional neural architecture by adding stacked convolutional layers increases its performance
up to a certain point, but adding too many convolutional layers actually worsens performance. This is
surprising, since practical activation functions allow convolutional layers to learn the identity mapping1.
The functions representable by n stacked convolutional layers are a subset of the functions representable
by m stacked convolutional layers when when m > n, since the last m−n layers can be set to the identity.
That adding additional layers worsens performance suggests that the problem lies with the optimization
algorithm, which fails to find the weights that would convert a convolutional layer to an identity mapping.
The authors argued the use of residual units enables the optimization algorithm to more easily find the
identity mapping, since a residual unit becomes an identity mapping if the weights of the final convolution
in its convolutional path are zero.

Variable-Depth Ensembles

Let Mk represent the operation of the convolutional path of the kth residual unit in a residual network.
For convenience, ignore the max layers in Figure 5.4. Let x0 represent the input to the network and let
x1, x2, . . . represent the output each of the residual units. Then we have

x1 =M1(x0) + x0

x2 =M2(x1) + x1

=M2(M1(x0) + x0) +M1(x0) + x0

x3 =M3(x2) + x2

=M3(M2(M1(x0) + x0) +M1(x0) + x0) +M2(M1(x0) + x0) +M1(x0) + x0 (5.1)

...

Thus in a network of K residual units, the output of the Kth residual unit is the sum of the outputs
of K + 1 convolutional networks of depths 0 to K, where the kth network shares all weights not in the
kth convolutional path with the (k − 1)th network. The authors of [WSH16] argue that these K + 1
convolutional networks can be thought of as being trained simultaneously and jointly, since the outputs
of these networks are summed and fed to the final layers of the network, whose output is ultimately fed
to the loss function. Furthermore they argue that during training the networks converge in sequence from
shallowest to deepest: when the 1-unit network is still converging, the deeper networks cannot converge
since their deeper units are receiving rapidly varying input. Once the 1-unit network has converged, the 2-
unit network can converge, and so on. According to this viewpoint, the optimization algorithm can build

1Or at least the identity plus an irrelevant constant.

35

up a ResNet by constructing a series of progressively deeper subnetworks. In contrast, a non-residual
network must be trained at full depth all at once. Perhaps relatedly, visualization techniques indicate that
the objective function (3.1) tends to be much smoother for ResNets than for other convolutional networks
[LXTG17].

5.2.2 Progressive NASNet

Recently, a research team at Google Brain had the idea of viewing the design of neural network architec-
tures as itself an optimization problem to which deep learning could be applied[LZS+17, ZL16]. Broadly
speaking, in each iteration of their architecture-design algorithm, a “controller” neural network specifies a
distribution over the space of possible architectures for a target problem. Several sample architectures are
drawn from this distribution. These sample architectures are trained on the target dataset, and then eval-
uated on a held-out portion of that dataset. At the end of the iteration, the parameters of the controller
architecture are adjusted to increase its probability of producing the sample architectures that achieved
the highest evaluation accuracy2. Because each iteration of the architecture-design algorithm requires
numerous sample architectures to be trained to convergence, architecture search generally requires vast
computational resources.

Progressive NASNet (NAS stands for Neural Architecture Search) is one of the most recent and most
powerful automatically generated architectures produced by this research program. While the Progressive
NASNet architecture was designed by a controller aiming to maximize accuracy on the CIFAR10[KH09]
image dataset, experiments demonstrate that convolutional architectures with good performance on one
benchmark tend to perform well on other tasks[KSL18], and thus I decided to try Progressive NASNet
for the labeling of sound clip spectrograms.

Like ResNet, Progressive NASNet consists of stacked subgraphs called units (see Figures 5.7 and 5.8).
Each unit accepts two input tensors and produces two output tensors. When down-sampling is necessary,
strided convolutions are used (see Section C).

Progressive NASNet units are considerably more complicated than residual units. Observe in Figure
5.7, that while Output 1 is the result of a complicated series of layers applied to Inputs 1 and 2, Output
2 simply receives Input 1 and forwards it on. Thus like residual units, Progressive NASNet units can be
interpreted as combining their own input with the input to the previous layer. Unlike with residual units,
with Progressive NASNet units this reasoning can be applied only once, and cannot be repeated to argue
that each units uses the input to all previous layers.

Perhaps the most salient feature of the Progressive NASNet unit is that it adds together the output
tensors produced by convolutional layers of different kernel sizes, as well as the output tensors produced by
max layers. This can be interpreted as an instance of the principle of combining information from different
scales and different levels of detail. This principle has been used by a number successful hand-designed
architectures (see [HCL+17] for example).

5.3 Activation Function

I used the leaky ReLU activation function given by LReLU(x) := max(x, 0.01x). I also experimented
with the Swish activation function, given by SWISH(x) = x

1+exp(−x) , a smooth approximation to ReLU.

Recent research[RZL17] suggest convolutional neural networks using SWISH are easier to optimize than
those using ReLU or LReLU, but this finding was not borne out in my tests (compare Rows 5.1.2 and
5.1.4 in Table 5.1).

2This is an instance of what is known as reinforcement learning.

36

5.4 Optimization

While many advanced, adaptive variants of minibatch gradient descent have been proposed[Zei12, KB14,
TH12], plain minibatch gradient descent combined with momentum and a decreasing learning rate schedule
(see Section 3.2) often achieves the state of the art on image-classification benchmarks[ZK16, HLVDMW17].
Unfortunately, the best learning rate schedule can be highly problem-dependent and difficult to determine.
Loshchilov and Hutter[LH16] introduced what they call a cosine-annealing learning rate schedule, accord-
ing to which the learning rate in step 0 ≤ t < tmax is given by

αt =
1

2
α0(1 + cos(

t

tmax
π)). (5.2)

This method achieves performance comparable to that of finely tuned learning rate schedules, but requires
only that one specify an initial learning rate α0 and an anneal duration tmax. Furthermore, Loshchilov
and Hutter found that cyclically repeating the annealing process while using the the neural network found
at t = tmax in one cycle as the initial guess at t = 0 in the next cycle produced further performance gains.
For these reasons, I used minibatch gradient descent with Loshchilov and Hutter’s cyclic cosine-annealing
learning rate schedule.

5.5 Data Augmentation

The performance of a neural network depends significantly on the quantity of data upon which it is
trained. When huge training datasets are unavailable, it is often beneficial to artificially expand a dataset
by synthetically generating data. Typically, this is achieved by applying transformations to the datapoints
in the training dataset. The transformations are chosen so that they do not change the correct label of
the datapoints to which they are applied, and thus a synthetically generated datapoint can be given the
same label as the original datapoint from which it was generated.

5.5.1 Pitch Shifting

The authors of [HCE+17] investigated many data augmentation techniques for convolutional neural net-
works applied to spectrograms in the context of audio classification. Of the techniques they tried, shifting
the pitch of the sound clips was by far the most effective. Consequently, I made use of pitch shifting
augmentation. For each clip in a minibatch, with 50% probability I shifted its pitch by a number of
semitones drawn uniformly from {−2,−1, 1, 2}. See Clips 1 for an example.

Comparing rows 5.1.1 and 5.1.2 in Table 5.1 reveals the power of pitch-shifting. The median accuracy of
the basic ResNet model trained with pitch-shifting is about 1.5 percentage points higher than the median
accuracy of same model without pitch-shifting. The 95% confidence intervals for these median accuracies
(computed from 30 runs with and without pitch shifting using the interpolated sign test[GF93, BH93])
are [0.8230, 0.8329] without pitch shifting and [0.8384, 0.8459] with pitch shifting, indicating that there is
a statistically significant difference3.

Conceivably, pitch shifting could be a useful augmentation for only certain categories of sound clip.
To test this, I calculated the per-category median accuracy of the basic ResNet model with and without
pitch shifting over 30 runs. Table 5.2 shows that while the model trained with pitch shifting was better
at classifying most categories, on certain categories its performance deteriorated. As a first attempt
to correct this, I trained a model in which pitch shifting was not applied to those categories for which
Table 5.2 showed a decrease in accuracy. The model trained by this partial augmentation had a slightly
increased median accuracy (0.8467 vs 0.8426), but this was not statistically significant. Moreover, this
naive approach does not account for the full complexity of identifying the best categories for augmentation.
It might be that augmenting one category increases its accuracy at the cost of dramatically decreasing

3Note that these confidence intervals are different from the percentiles reported in Table 5.1.

37

the accuracy of a second category, so that an optimal augmentation scheme would not augment the first
category at all. Future work could consider automatically exploring per-category augmentation schemes.

Guitar

Guitar Shifted 1 Semitone

Guitar Shifted 2 Semitones

Clips 1: When this essay is viewed with a recent version of Adobe Reader with the Adobe Flash Player
plugin installed, double-clicking the above buttons plays the original and pitch-shifted versions of a training
sound clip from the Guitar category of the DCASE Freesound General-Purpose Audio Tagging Challenge.

5.5.2 Mixup

The winners of the 2018 DCASE Freesound General-Purpose Audio Tagging Challenge[JL] used a special
form of data augmentation called mixup[ZCDLP17]. Mixup is motivated by the observation that trained
neural networks often exhibit erratic behaviour on artificial datapoints that are convex combinations of
true datapoints. Mixup attempts to train a neural network to make sensible predictions on such artificial
datapoints, in the hopes that this will result in more sensible behaviour overall. In more detail, whenever
a minibatch is needed by minibatch gradient descent, each mixup datapoint in the minibatch is generated
as follows. Two random datapoints (x1, y1) and (x2, y2) are drawn uniformly at random from the original
training dataset, and a scalar λ ∈ [0, 1] is drawn at random according to a Beta distribution. The idea is
to generate an artificial datapoint that is a convex combination of the two original datapoints whose label
is the corresponding combination of the original labels. To facilitate this, we express the original labels
y1, y2 ∈ Y in vector form γ(y1), γ(y2) ∈ R#Y . That is

(γ(y))i =

{
1 if y is the ith label in Y
0 otherwise

. (5.3)

The mixup datapoint is (1 − λ)x1 + λx2 and has vector label (1 − λ)γ(y1) + λγ(y2). It remains to
describe how to calculate the loss for such a datapoint, since (2.45) does not directly apply to vector
labels. The loss in (2.45) can be seen as a special case of the Kullback-Leibler divergence, a measure
of the distance between probability distributions. If p ∈ ∆Y and q ∈ ∆Y+ (where ∆Y and ∆Y+ are the
set of probability distributions and nonnegative probability distributions over Y respectively), then the
Kullback-Leibler divergence is given by

KL(p, q) :=
∑
y∈Y
py 6=0

py log

(
py
qy

)
. (5.4)

The original loss function (2.45) is then l(h, x, y) = KL(γ(y), fh(x)). We calculate the loss at a mixup
datapoint as

KL((1− λ)γ(y1) + λγ(y2), fh((1− λ)x1 + λx2)). (5.5)

Mixup has been successfully used for many different labeling problems, but seems from an intuitive
point of view particularly suitable for audio labeling, since the audio scenes we actually hear in the
real world are often the superposition of sounds from many different sources. Although the competition
winners attribute a large part of their success to mixup augmentation, several other teams used mixup
and scored significantly worse than me. In addition, my own experiments with mixup do not show that
it is significantly better than pitch shifting. It may be that mixup is only effective in combination with
some other aspect of the winner’s algorithm.

38

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

4.048987

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

4.048987

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

4.048987

5.6 Data Balancing

The training dataset for the 2018 DCASE Freesound General-Purpose Audio Tagging Challenge does not
contain an equal number of clips of each of the 41 possible categories. The category “Glockenspiel” is
the least common in the training set, having only 94 clips, while 17 different categories are tied for most
common, with 300 clips. This discrepancy is not huge, and I did not expect it to significantly affect
accuracy. After some unsuccessful preliminary experiments with re-weighting the loss associated with
clips based on the frequency of their category, I did not use data-balancing for the rest of the competition.

The winning team[JL] used an interesting data-balancing scheme that works by modifying the mini-
batch gradient descent algorithm (see Section 3.2). Instead of forming a minibatch in each iteration by
selecting a subset of the training set uniformly at random, they form a minibatch of size 41 containing one
random training clip of each of the 41 possible categories. Intuitively, this approach is appealing because
in addition to enforcing balance between the categories, it also forces the optimization algorithm to take
into account every category in every iteration. For example, the categories “Fireworks” and “Gunshot or
gunfire” are sometimes hard to distinguish. If we include an example of both in every minibatch, then we
might expect to decrease the odds of an erroneous step that improves the network’s ability to recognize
“Fireworks” at the cost of dramatically worsening its ability to detect “Gunshots or gunfire”.

After the competition, I experimented with retraining one of my models with this data balancing
scheme. Doing so increased the median accuracy. Moreover, the 95% confidence intervals for the model’s
accuracy without and with the data balancing scheme were [0.8384, 0.8459] and [0.8461, 0.8537] respec-
tively, indicating a statistically significant improvement (the intervals were computed using the same
method as in Section 5.5).

5.7 Data Weighting

One idiosyncrasy of this contest’s training dataset is that the labels were assigned by users of the Freesound
website, and so are not completely reliable. Some of the clips have a “verified” annotation, indicating that
the label has been verified by someone besides Freesound users. Thus it is conceivable that there would
be value in weighting examples with this annotation higher than examples without it. I attempted this,
but found that it did not improve my validation accuracy.

The winners of the contest[JL] employed a special technique to deal with the unreliable data. In each
iteration of minibatch gradient descent, they used the gradients at only a subset of the training examples
in that iteration’s minibatch. The gradients at verified training examples were automatically used. The
gradient at an unverified training example was used if the loss function (see (2.45)) evaluated at that
training example was less than 0.8 times the maximum loss over all examples in the minibatch. The idea
was that unverified training examples with very high loss might be improperly labeled, and so should be
excluded.

5.8 Clip Duration

The training data provided to contest participants consisted of sound clips ranging in length from 0.3
seconds to 30 seconds. This presented something of a problem for the use of minibatch gradient descent
(see Section 3.2). Although both the ResNet and Progressive NASNet architectures can be trained and
tested on input with different L and W dimensions, efficient algorithms implementing convolutional layers
require that all tensors in a minibatch have the same L and W (see Section 2.5.1). Since all clips were
transformed with the same frequency decomposition, all input tensors had the same L. However, different
clip lengths gave them different W . To deal with this issue, whenever I trained a model, I fixed a target
width Wτ . Then, in each iteration, whenever the model drew a minibatch, I adjusted the width of the
spectrogram of each clip to match Wτ . If a clip had a spectogram with W > Wτ , a random crop of width

39

Wτ was selected. If a clip had W < Wτ , I increased the width of clip’s spectrogram either by padding
with silence (50% probability) or by repeatedly duplicating the clip (50% probability).

In addition to being a practical technique to enable efficient minibatch gradient descent, the clip length
adjustment procedure can also be seen as an instance of data augmentation (see Section 5.5), since every
time a given clip with large W is selected to be used in the current minibatch, a different crop may be
used. In this way, the procedure described resembles the cropping augmentation frequently used in image
classification (see Section 4.1 of [KSH12]).

5.9 Ensembling

As is common in machine learning competitions, I achieved my best accuracy by averaging the predictions
of a number of different models. My final ensemble consisted 14 different convolutional neural networks:
7 ResNets and 7 Progressive NASNets. For both of the architectures, I varied the size of the networks as
well as the clip duration (see Section 5.8). Averaging models trained with different clip duration seemed
particularly valuable, possibly because the resultant ensemble took into account information on different
time scales.

5.10 Software

I implemented the deep neural networks in Pytorch[PGC+17], a Python automatic differentiation frame-
work with a C++/ CUDA backend. I used Librosa[MRL+15], a Python audio library, for audio processing.

5.11 Results

Table 5.1 shows the top-1 prediction accuracies of some of the models I experimented with. I have already
discussed the benefits of pitch-shifting data augmentation in Section 5.5 (compare row 5.1.1 with row
5.1.2 and row 5.1.7 with 5.1.8). Generally, the results show that making a ResNet or Progressive NASNet
architecture deeper or wider (and thus increasing the number of parameters and floating point operations)
makes it more accurate, but that there are diminishing returns. Comparison of rows 5.1.5 and 5.1.6 shows
that removal of a downsampling layer from a very deep ResNet also increases accuracy, likely by giving
the model access to more precise time and frequency information, but at the cost of an increased number
of floating point operations. Row 5.1.10 shows the value of training a network with a longer clip duration.
I can think of two possible explanations for this. The first is that certain characteristic patterns of sound
that identify the category of a clip are longer than 1 second, so that training with a clip length of only 1
second does not allow the network to learn to identify these patterns. The second explanation is based
on the observation that a significant number of the longer sound clips contain regions of either silence or
irrelevant background noise. Using a clip duration of only 1 second implies a substantial likelihood that
the portion of such a clip chosen for use in a minibatch may be entirely silence or background noise, which
may interfere with optimization. Using a longer clip duration may prevent this problem.

Clips 2 provides some examples of mis-classifications by my final ensemble. 06775f3c, whose true
category is “Bus”, consists mostly of a human voice, and was likely classified as “Laughter” because some
training clips of laughter contain human voices. 7c9fb8d6, whose true category is also “Bus”, is mostly
the white-noise-like sound of the bus itself, which is similar to the white-noise-like sound heard during
applause in a large room, explaining the mis-classification. The rising high-pitch firework sound heard in
clip 0ed387f3 resembles the sound produced when a piece of paper is torn. The forceful banging heard
in clip 38957ab8 has many of the subjective auditory properties of the sound of gunshots, though most
humans would probably be able to tell the difference. b1b41c63 is a low note played on a guitar, which I
expect many humans would have a hard time distinguishing from the sound of a plucked cello.

40

The creators of Progressive NASNet[LZS+17] report its superiority over the ResNeXt and ShuffleNet
architectures, while the creators of ResNeXt and Shufflenet report that those architectures yield better
accuracy than ResNet[XZ17]. My results on the DCASE 2018 dataset do not strongly bear out this
hierarchy: the performance of Progressive NASNet and ResNet are similar for architectures that require
similar numbers of floating point operations. It is possible that my comparison was not fine-grained enough,
and that if I were to experiment with more depths and widths of Progressive NASNet and ResNet, I would
find evidence of the superiority of the first over the second. It is also possible that Progressive NASNet is
somehow specifically adapted for image processing, and loses some of its edge when applied to the audio
processing task.

Row Name Median Acc 25 pct 75 pct
Mults
(×106)

Params
(×104)

5.1.1 ResNet (C = 60) no augmentation 0.8279 0.8216 0.8335 51 28
5.1.2 ResNet (C = 60) + PS 0.8426 0.8378 0.8468 51 28
5.1.3 ResNet (C = 60) + PS + Balance 0.8510 0.8447 0.8553 51 28
5.1.4 ResNet (C = 60) + PS + Swish 0.8449 0.8366 0.8495 51 28
5.1.5 ResNet (C = 60, ×3 depth) + PS 0.8480 0.8433 0.8528 104 84
5.1.6 ResNet (C = 60, ×3 depth,−1 DS) + PS 0.8587 0.8507 0.8628 331 84
5.1.7 Prog. N. (C = 48) no augmentation 0.8380 0.8364 0.8470 215 222
5.1.8 Prog. N. (C = 48) +PS 0.8549 0.8499 0.8576 215 222
5.1.9 Prog. N. (C = 96) + PS 0.8595 0.8582 0.8632 755 838
5.1.10 Prog. N. (C = 96) + PS + clip len.=5sec 0.8822 0.8814 0.8822 755 838
5.1.11 Final Ensemble 0.9138 - - - -

Table 5.1: Median Acc: median accuracy; 25 pct: 25th percentile accuracy; 75 pct: 75th percentile
accuracy; Mults: approximate number of floating point multiplies required to apply the trained network
to a 900ms sound clip; Params: number of parameters in the neural architecture. PS: Pitch shifting (see
Section 5.5); Prog. N.: Progressive NASNet. Note that C refers to the number of channels in the first
residual or progressive NAS unit. “×n depth” indicates that each unit in the original architecture has
been replaced by n stacked copies in the new architecture . −1 DS indicates that the first downsample,
whether it works by striding or pooling, has been removed from the architecture. Balance indicates that
the data balancing scheme described in Section 5.6 is used. Clip len. indicates that a clip length other
than the default 1 second has been used. The results in rows 5.1.1, 5.1.2, and 5.1.3 are from 30 runs each.
Results in rows 5.1.4 to 5.1.10 are from 24 hours worth of runs each. Each run consisted of 2 cycles of
the cyclic cosine annealing procedure described in Section 5.4. Each cycle consisted of 100 epochs. Each
epoch consisted of a number of iterations equal to the dataset size divided by the minibatch size.

True Category Predicted Category Clip

Bus Laughter 06775f3c

Bus Applause 7c9fb8d6

Fireworks Tearing 0ed387f3

Knock Gunshot or gunfire 38957ab8

Acoustic guitar Cello b1b41c63

Clips 2: Examples of mis-classified clips. When this essay is viewed with a recent version of Adobe Reader
with the Adobe Flash Player plugin installed, double-clicking a clip name will play it.

41

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

5.3289924

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

21.289814

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

1.4367341

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

6.3216496

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

12.8783245

With Pitch Shifting Without Pitch Shifting
Median Conf Int L Conf Int R Median Conf Int L Conf Int R Median Diff

Overall 0.8426 0.8384 0.8459 0.8279 0.823 0.8329 0.0147
Acoustic guitar 0.8333 0.8056 0.8333 0.7778 0.75 0.8333 0.0555
Applause 1 1 1 1 1 1 0
Bark 0.8696 0.8261 0.913 0.8696 0.8261 0.8696 0
Bass drum 0.913 0.8696 0.913 0.8696 0.8261 0.913 0.0434
Burping or eructation 1 0.9615 1 0.9615 0.9615 0.9615 0.0385
Bus 0.7 0.65 0.75 0.7 0.65 0.7 0
Cello 0.9545 0.9318 0.9545 0.9318 0.9091 0.9545 0.0227
Chime 0.7083 0.7083 0.75 0.6667 0.6667 0.6667 0.0416
Clarinet 0.9778 0.9556 0.9778 0.9556 0.9333 0.9749 0.0222
Computer keyboard 0.7619 0.7143 0.8034 0.7143 0.6667 0.7619 0.0476
Cough 0.9583 0.9167 0.9583 0.9167 0.9167 0.9583 0.0416
Cowbell 0.9706 0.9412 0.9706 0.9412 0.9412 0.9706 0.0294
Double bass 0.9375 0.9375 0.9688 0.9375 0.9062 0.9375 0
Drawer open or close 0.5417 0.4583 0.5833 0.625 0.5054 0.6667 -0.0833
Electric piano 0.7692 0.7357 0.8077 0.7692 0.7308 0.7692 0
Fart 0.9167 0.9167 0.9583 0.875 0.8333 0.9113 0.0417
Finger snapping 0.963 0.9259 0.963 0.963 0.9259 0.963 0
Fireworks 0.6731 0.6204 0.7258 0.6538 0.6154 0.6923 0.0193
Flute 0.9659 0.9545 0.9773 0.9545 0.9545 0.9773 0.0114
Glockenspiel 0.5417 0.5 0.5833 0.5417 0.5 0.5833 0
Gong 0.9 0.9 0.9333 0.9 0.8667 0.9 0
Gunshot or gunfire 0.6078 0.5686 0.6641 0.6471 0.6275 0.6812 -0.0393
Harmonica 0.8148 0.7778 0.8519 0.7778 0.7407 0.8148 0.037
Hi-hat 0.8438 0.8165 0.875 0.8125 0.8125 0.871 0.0313
Keys jangling 0.7391 0.7391 0.7826 0.7391 0.7013 0.7826 0
Knock 0.8125 0.8125 0.8438 0.8438 0.8125 0.8438 -0.0313
Laughter 0.9032 0.9032 0.9355 0.9032 0.871 0.9355 0
Meow 0.875 0.875 0.9113 0.8333 0.7917 0.875 0.0417
Microwave oven 0.75 0.672 0.75 0.7083 0.6667 0.7446 0.0417
Oboe 0.9706 0.9412 0.9706 0.9706 0.9412 0.9706 0
Saxophone 0.9659 0.9333 0.9659 0.9432 0.9205 0.9545 0.0227
Scissors 0.35 0.35 0.4 0.35 0.35 0.4 0
Shatter 0.875 0.8333 0.875 0.8333 0.7917 0.8333 0.0417
Snare drum 0.9286 0.8929 0.9643 0.8929 0.8571 0.8929 0.0357
Squeak 0.3125 0.2917 0.375 0.25 0.2083 0.3333 0.0625
Tambourine 0.9688 0.9688 0.9688 0.9375 0.9375 0.9688 0.0313
Tearing 0.8864 0.8636 0.9091 0.9091 0.8636 0.9545 -0.0227
Telephone 0.6923 0.6667 0.6923 0.641 0.6154 0.6634 0.0513
Trumpet 0.9667 0.9667 1 0.9333 0.9333 0.9667 0.0334
Violin or fiddle 0.9713 0.9655 0.977 0.9655 0.954 0.977 0.0058
Writing 0.7083 0.6304 0.7083 0.75 0.7083 0.7917 -0.0417

Table 5.2: Per-category median accuracy of a ResNet (C = 60) model trained with and without pitch
shifting augmentation. 30 runs were performed both with and without pitch shifting. The left and right
endpoints of a 95% confidence interval calculated using the interpolated sign test are also given (see [GF93]
and [BH93]). The values in the final column are the differences between the median accuracies with and
without augmentation.

5.12 Other Attempts

Over the course of the competition, I attempted many variants of my core strategy, many of which turned
out to be unsucessful. I describe a few here.

42

• Following Zeghidour ConvNet[ZUS+18], I incorporated the short-time Fourier transform into the
neural architecture to achieve end-to-end training. That is, I introduced a special initial convolutional
layer that accepted an unprocessed one-dimensional amplitude signal and, with its initial weights,
closely modeled the short-time Fourier transform. I allowed these weights to be learned during
training, in the hopes of discovering a time-frequency representation more suitable that the STFT
to the problem at hand. Unfortunately, models produced by this procedure proved inferior to those
found by using a fixed short-time Fourier transform. I suspect that this may be because allowing
the time frequency transformation to be trainable means having a trainable convolution with a
very large kernel size. Experience demonstrates that the most easily trained convolutional neural
networks have small or moderately sized kernels.

• I attempted to account for the unreliability of some of the unverified sound clips using virtual
adversarial training (VAT)[MMKI17]. My procedure was to train one model, and after training,
identify the unverified sound clips (see Section 5.7) for which the trained model had a high loss, and
erase the label on these sound clips. I then trained a second model on the modified training data.
For sound clips with an erased label, I used virtual adversarial loss instead of the loss of (2.45).
Virtual adversarial loss encourages the predicted labels of the unlabeled sound clips to be stable to
perturbations of the data. This approach is similar in spirit to the one used by the winners and
described in Section 5.7, but unfortunately it did not improve the accuracy of my model. Virtual
adversarial training is most appropriate when the unlabeled datapoints fit into one of the label
categories. Some of the unverified datapoints in the 2018 DCASE training set do not actually fit
into any of the label categories. If there are enough of these points, this could explain the lack of
improvement from the use of virtual adversarial training.

• I attempted additional data augmentation by randomly mixing the sound clips with background
noise from the BBC sound effects library4, while being sure that none of the background noises
contained sounds from the list of possible labels (See Section D). In contrast to pitch-shifting
augmentation, this background-noise augmentation slowed training without providing a noticeable
benefit to validation accuracy.

• The authors of [MR17] describe a transfer-learning procedure by which they improved the perfor-
mance of their neural network model on a speech recognition task by first pre-training it for a general
audio classification task. They used their pre-trained network (modified to use the correct number
of categories) as an initial guess while training for the speech recognition task. I attempted the
opposite transfer, first training on the Google Speech Commands[War17] dataset, and then trans-
ferring to the contest dataset. Unfortunately this yielded no appreciable benefit. It may be that
transfer learning works better when the transfer is from a general task like audio classification to a
more specific task like speech recognition than in the opposite direction.

4http://bbcsfx.acropolis.org.uk

43

Figure 5.4: An example residual network. See Section C for layer descriptions. C is a parameter. di
indicates the number of input channels of a given residual unit. The number of output channels of a
residual unit is always equal to the di of the next unit. (sw, sl) = (2, 2) are the strides of the max pooling
layers (see Section C). All convolutional layers in residual units use the same nonlinear activation function,
while the fully connected layer uses the identity as its activation function.

44

Figure 5.5: Residual unit

45

Figure 5.6: A bottleneck convolutional path. The path accepts as input a tensor of dimensions (IW , IL, Id)
and produces as output a tensor with the same dimensions. All convolutions have a kernel size of (kw, kl) =
(3, 3) and are unstrided ((sw, sl) = (1, 1)) Note that unlike the standard convolutional layers described in
the text, modern ResNets use pre-activation, according to which the activation function is applied to the
input tensor before — not after— the convolution.

46

Figure 5.7: Progressive NASNet Unit. DS Conv stands for Depthwise Separable Convolution. See Section
C for definitions of the layer types. In each pooling and convolutional layer, (kw, kl) indicates the kernel
size. All convolutional layers used batch normalization. Each Progressive NASNet unit has parameters di
and do, specifying the number of input and output channels. All layers produce di output channels except
for the final convolution, which produces do. If di 6= do, an extra convolution is added before output 2 to
generate an appropriate number of output channels.

47

Figure 5.8: A Progressive NASNet Architecture. C is a parameter. For each progressive NASNet unit, di
indicates the number of input channels, do indicates the number of output channels, and sw, sl indicates
the stride used to downsample the input tensors received. All convolutions in progressive NASNet units
have the same nonlinear activation function. The Fully connected layer has the identity as its activation
function.

48

Figure 5.9: An overview of the pipeline by which the neural networks were trained.

49

Figure 5.10: An overview of the pipeline by trained neural networks were used to label test sound clips.

50

Chapter 6

Conclusions

In the first part of this essay, I surveyed some of the theory of neural networks, illustrating the various
ways neural networks derive their power from their compositional structure. In the case of simple shallow
neural networks, which are linear combinations of pre-compositions of a fixed function with variable affine
functions, this compositional structure enables the use the use of the chain rule to show that simple shallow
neural networks can efficiently approximate any polynomial and hence any continuous function. In the case
of deep networks, I cited results showing that because deep neural networks are more compositional than
shallow ones, (a) deep neural networks can represent more complex and interesting functions than shallow
networks with a given neuron budget (for the right definitions of “complex” and “interesting”); and (b) in
certain restricted cases (ReLU-nets and networks whose compositional structure conforms to that of the
target function) deep neural networks have better order of approximation than shallow networks. While
these results are impressive, they are also somewhat disjointed. As I see it, what is required is a theory
that specifies a very general class of interesting functions and shows how the compositional structure of
deep neural networks makes them particularly suited for approximating functions of this class. Obviously,
it is far easier to describe what is needed than to accomplish it.

In the second part of this essay, I described my entry into an audio-labeling machine learning compe-
tition. My experience in this competition demonstrates that in the application of deep neural networks to
machine learning, although selecting a good architecture is important, choosing the right data processing
techniques is also vital. Pitch-shifting data augmentation was key to performance my models, and without
it I would not have placed in the top 3%. Furthermore, from the winners’ description of their algorithm it
seems that what distinguished them from other competitors was their methods of augmenting, balancing,
and masking the data1. One avenue for future work might be the partly or fully automated design of such
data processing schemes.

1Though in my experiments, only their data balancing scheme improved the accuracy of my models.

51

Appendix A

Description of Backward Propagation

Definition A.1. A computation graph is scalar if it has only one output vertex and that output vertex
has range R. Denote the output vertex of a scalar computation graph by vout.

Definition A.2. The function F induced by a scalar computation graph (see Definition 3) can be dif-
ferentiated via a recursive procedure called backward propagation. For vertexes v and w with v ∈ in(w)
denote by ∂w

∂v [z] : Rv → Rw the linear function representing the partial derivative at z ∈ Rin(w) of cw
with respect to the input it receives from vertex v. Then define for each vertex v and each input to the
graph x ∈ D the linear function ∂F

∂v [x] : Rv → R given by

∂F

∂v
[x] :=

{
1 if v = vout∑
w∈out(v)

∂F
∂w [x] ◦ ∂w∂v

[
Fin(w)(x)

]
otherwise

. (A.1)

By chain rule ∂F
∂v is the derivative of the F with respect to the output of cv. Letting Dcv denote the total

derivative of cv with respect to all its inputs, the total derivative of F is then given (again by chain rule)
by

DF [x] =
⊕
v∈Vin

∂F

∂v
[x] ◦Dcv[xv]. (A.2)

52

Appendix B

Additional Proofs

B.1 Non-Smooth Activation Functions

Here we show that the requirements of Proposition 2 can weakened to demand only a continuous activation
function. We first prove an auxially result.

Proposition B.1. If f ∈ cl SSNN1(σ) then for all λ, θ ∈ R, f(λ ·+θ) ∈ cl SSNN1(σ)

Proof. Follows since if we have SSNN1 ⊃ {gn} → f uniformly on compact sets then SSNN1 ⊃ {gn(λ ·
+θ)} → f(λ ·+θ) uniformly on compact sets.

We are now able to weaken the requirements of Proposition 2.

Proposition 3 (Proposition 3.7 in [Pin99]). Apply the topology of uniform convergence on compact sets
to C(R). Assume σ ∈ C(R) is not a polynomial. Then all polynomials lie in cl SSNN1(σ).

Proof. For any φ ∈ C∞(R) with compact support1 define the function σφ : R→ R by

σφ(x) :=

∫
R
σ(x− t)φ(t) dt. (B.1)

We claim that σφ ∈ cl SSNN1(σ). We will prove the claim by Riemann integration. Let [−R,R] contain
the support of φ, and for m > 0 let δm := 2R

m , let tmi := −R+ iδm, and let rm : R→ R be given by

rm(x) =

m∑
i=1

σ(x− tmi)φ(tmi)δm. (B.2)

Note that rm ∈ SSNN1(σ), so to prove the claim it suffices to show that the rm converge to σφ uniformly
on an arbitrary compact set K ⊂ R. We have

|σφ(x)− rm(x)| (B.3)

= |
∫ R

−R
σ(x− t)φ(t) dt−

m∑
i=1

σ(x− tmi)φ(tmi)δm| (B.4)

≤
m∑
i=1

(∫ tmi

ti−1

|σ(x− t)||φ(t)− φ(tmi)|dt

)
+

m∑
i=1

(∫ tmi

ti−1

|σ(x− t)− σ(x− tmi)||φ(tmi)|dt

)
(B.5)

≤ 2R sup
z∈K+[−R,R]

|σ(z)| sup
ta,tb∈[−R,R]
|ta−tb|≤δm

|φ(ta)− φ(tb)|+ 2R sup
t∈[−R,R]

φ(t) sup
za,zb∈K+[−R,R]
|za−zb|≤δm

(σ(za)− σ(zb)). (B.6)

1The support of a function is the closure of the set of points at which it is nonzero.

53

Both terms go to zero as m → ∞ by the uniform continuity of the continuous functions φ and σ on the
compact sets [−R,R] and K+[−R,R]. So we have proven the claim. It follows from Proposition B.1 that
cl SSNN1(σφ) ⊂ cl SSNN(σ).

Since σφ ∈ C∞(R)[Fol13, Proposition 9.3b] for any φ ∈ C∞(R), we can apply the same technique as
in the proof of Proposition 2 to show that for all φ ∈ C∞(R), all k ≥ 0, and all θ ∈ R,

(t 7→ tkσ
(k)
φ (θ)) ∈ cl SSNN1(σφ). (B.7)

There exists a family {φn}n∈Z+
⊂ C∞(R) with compact support such that σφn → σ uniformly on compact

sets as n → ∞[Fol13, Proposition 8.14b]. Now suppose to get a contradiction that for some k ≥ 0 we
have that the monomial tk is not in cl SSNN1(σ). Then since cl SSNN1(σφn) ⊂ cl SSNN1(σ) for all n we

have that the monomial tk is not in cl SSNN1(σφn) for all n. But this implies by (B.7) that σ
(k)
φn

(θ) = 0
for all θ for all n, so that σφn is a polynomial of degree less than k for all n. But since σφn → σ uniformly
on compact sets as n → ∞, we have that σ is a polynomial of degree less than k, a contradiction. So
cl SSNN1(σ) contains all the monomials and thus all the polynomials as desired.

B.2 Ridge Polynomials

In this section we show that the ridge polynomials of degree less than k span the polynomials of degree
less than k. This was used in Proposition 4, and Proposition 6.

B.2.1 Multi-indexes

Definition B.1. If α ∈ Zn+ call α a multi-index and let |α| :=
∑n
i=1 αi and α! =

∏n
i=1 αi!. Furthermore

denote

xα := xα1
1 . . . xαnn for x ∈ Rn (B.8)

Dα :=
∂|α|

∂xα1
1 . . . ∂xαnn

. (B.9)

If p : Rn → R is a polynomial of degree k in n variables given by p(x) =
∑
|α|≤k bαx

α, define the differential
operator

p(D) =
∑
|α|≤k

bαD
α. (B.10)

B.3 Polynomials

Definition B.2. A polynomial p : Rn → R is homogeneous of degree k if it is of the form p(x) =∑
|α|=k bαx

α. Denote by Hk the vector space of such polynomials.

Hk is a vector space of dimension
(
n−1+k
n−1

)
. This follows from a combinatorial argument: consider

n− 1 + k slots into which n− 1 dividers can be placed to generate n regions. Each choice of where to put
the dividers maps bijectively to a monomial in a basis for Hk, where the number of empty slots in the jth
region corresponds to the exponent of xj in the monomial.

Definition B.3. A function p : Rn → R is a ridge monomial if it is of the form

p(x) = 〈x, a〉k (B.11)

for some a ∈ Rn and k ∈ Z+. A ridge polynomial is a linear combination of ridge monomials.

54

Proposition B.2 (First part of Theorem 4.1 in [Pin99] and Proposition 5.1 in [Pin15]). The ridge
polynomials of degree k span the homogeneous polynomials of degree k

Proof. First note that if α1, α2 are multi-indexes with k = |α1| = |α2| and pα2 is the monomial given by
pα2(x) := xα2 then

Dα1pα2
=

{
α1! if α1 = α2

0 otherwise
. (B.12)

Since the monomials of degree k form a basis for Hk, the functions of the form Dα with |α| = k form a
basis for the linear functionals on Hk (where the constant functions are identified with their value in R).
Thus any linear functional on Hk can be written as q(D) where q ∈ Hk. Now consider applying a linear
functional defined by q ∈ Hk to a ridge monomial:

q(D)(〈·, a〉k) = k!q(a). (B.13)

A vector lies in a closed subspace if and only if all continuous linear functionals that vanish on the
subspace also vanish on the vector[Fol13, Theorem 5.8 pg 159]. Consider a linear functional that vanishes
on the ridge polynomials of degree k, viewed as a subspace of the homogeneous polynomials of degree
k. By (B.13) the polynomial q corresponding to the linear functional is everywhere 0. Hence the linear
functional vanishes everywhere. Hence the ridge polynomials span the homogeneous polynomials.

Proposition B.3 (Middle of proof of Theorem 4.1 in [Pin99]). Let n, k ≥ 1 Let r =
(
n−1+k
n−1

)
. There exist

fixed vectors a1, . . . , ar ∈ Rn such that for every polynomial p in n variables of degree less than on equal
to k there are univariate polynomials π1, . . . , πr of degree less than or equal to k satisfying

p(x) =

r∑
i=1

πi(〈x, ai〉). (B.14)

Proof. By Proposition B.2, there exists a1, . . . , ar such that every homogeneous polynomial p of degree k
lies in span({〈·, ai〉k}ri=1).

Now we claim that for s < k, every homogeneous polynomial of degree s lies in span({〈·, ai〉s}ri=1) (for
the same choice of a1, . . . , ar). To get a contradiction, suppose the claim is not true. Then there must be
a nontrivial linear functional on Hs that vanishes on {〈·, ai〉s}ri=1[Fol13, Theorem 5.8 pg 159]. So by the
proof of Proposition B.2, there must be a q ∈ Hs that vanishes on A := {a1, . . . , ar}. Let p ∈ Hk−s be
nonzero. Then pq ∈ Hk is a nonzero polynomial2 and corresponds to a nonzero linear functional pq(D)
on Hk that vanishes on {(〈·, a1〉)k, . . . , 〈·, ar〉)k}. This contradicts our choice of A. So we have proven the
claim.

Since the homogeneous polynomials of degree less than or equal to k span the algebraic polynomials
of degree less than or equal to k, we have that every polynomial of degree less than or equal to k can be
written as a linear combination of the terms of the form {ai, x}s for 0 ≤ s ≤ k and 1 ≤ i ≤ r. This implies
the desired result.

Proposition B.3 is the result we require. It is more precise than was needed in Section 2.3.1, but the
precision was necessary in Section 2.3.2.

2Since the multivariate polynomials are an integral domain.

55

Appendix C

Additional Layer Types for
Convolutional Neural Networks

Definition C.1. Let v be a vertex in a computation graph with indegree degin ∈ Z++. Call v a sum
layer if for all u ∈ in(v) Ru = Rd×L×W = Rv for some d, L,W ∈ Z++ and

cv(x1, x2, . . . , xdegin
) =

degin∑
i=1

xi. (C.1)

Definition C.2. Let v be a vertex in a computation graph with indegree degin ∈ Z++. Call v a con-
catenation layer if for all u ∈ in(v) we have Ru = Rdu×L×W for some du, L,W ∈ Z++ and Rv =

R(
∑
u∈in(v) du)×L×W and cv operates by concatenating the input tensors along their first dimension to

produce the output tensor.

Definition C.3. Let v be a vertex in a computation graph. Call v a max layer or max pooling layer if

there are d,W,L, sw, sl, kw, kl ∈ Z++ such that Dv = Rd×L×W and Rv = Rd×d
L
sL
e×d Wsw e and

cv(x)i,jw,jl := max{xi,1+sw(jw−1)+pw,1+sl(jl−1)+pl}b kw−1
2 c≤pw≤d kw−1

2 e,b kl−1

2 c≤pl≤d
kl−1

2 e (C.2)

where again we use zero-padding boundary conditions.

Note that in Section 5 in our description of Progressive NASNet we have occasion to discuss strided
convolutional layers with strides sw, sl ∈ Z++. Such a layer is equivalent to a standard convolutional layer
followed by a max layer with kw = kl = 1 and the given strides sw, sl. Of course, in practice strided
convolutional layers are implemented more efficiently.

Definition C.4. Let v be a vertex in a computation graph. Call v a global pooling layer if there
exist d,W,L ∈ Z++ such that v has vertex domain Rd×W×L, vertex range Rd, and vertex function
cv : Rd×W×L → Rd given by

cv(A)i =
1

WL

W∑
jw=1

L∑
jl=1

Ai,jw,jl . (C.3)

Definition C.5. Let v be a vertex in a computation graph. Call v a flattening layer if there exist
d,W,L ∈ Z++ such that v has vertex domain Rd×W×L, vertex range RdWL, and if the vertex function cv
simply rearranges its input into a single column using row-major order.

56

Definition C.6. Let v be a vertex in a computation graph. Call v a fully connected layer with activation
function σ if there exists di, do ∈ Z++ and A ∈ Rdo×di such that the v has vertex domain Rdi , vertex
range Rdo , and vertex function cv defined by

cv(x)k = σ(Ax)k (C.4)

for 1 ≤ k ≤ d0. The matrix A is called the weight matrix.

Definition C.7. Let v be a vertex in a computation graph. Call v a softmax layer if there exists d ∈ Z++

such that v has vertex domain and range Rd and vertex function given by

cv(z)i =
exp(zi)∑d
j=1 exp(zj)

. (C.5)

C.1 Depthwise Separable Convolutions

To compute a single entry in the output tensor of a convolutional layer, one convolves across the channel
dimension (index p in (2.41)) and across the depth dimensions (indexes qw and ql in (2.41)). Deep
learning researchers at Google have argued that in trained ConvNets, the channel-wise and depth-wise
aspects of a convolutional layer are sufficiently independent that it is valuable to impose this independence
explicitly[Cho17]. That is, instead of convolving with the tensors {T 1, . . . , T do} ⊂ Rdi×kw×kL , we use
depth-wise weight tensors {D1, . . . , Ddi} ⊂ Rkw×kl and channel-wise weight tensors {C1, . . . , Cdo} ⊂ Rdi
and replace (2.41) with

Sdi,jw,jl :=
∑

qw,ql∈Z
Di
qw,ql

Ai,jw−qw,jl−ql (C.6)

cv(A)i,jw,jl := σ

(
di∑
p=1

CipS
d
p,jw,jl

+ bi

)
. (C.7)

Convolutions decomposed this way are said to be depthwise-separable. Such convolutions have been used
in a number of very successful ConvNet architectures[Cho17, HZC+17].

57

Appendix D

Freesound General-Purpose Audio
Tagging Challenge Labels

The aim of the competition was to correctly label each sound clip. The possible labels are listed below.

Acoustic guitar Applause Bark Bass drum Burping or eructation
Bus Cello Chime Clarinet Computer keyboard

Cough Cowbell Double bass Drawer open or close Electric piano
Fart Finger snapping Fireworks Flute Glockenspiel
Gong Gunshot or gunfire Harmonica Hi-hat Keys jangling
Knock Laughter Meow Microwave oven Oboe

Saxophone Scissors Shatter Snare drum Squeak
Tambourine Tearing Telephone Trumpet Violin or fiddle

Writing

58

Appendix E

List of Symbols

dxe Ceiling of x: the smallest integer greater than or equal to x.
cl(S) Closure of the set S: the limits of sequences in S
#S Number of elements in the set S
x Complex conjugate of x. If x = a+ bi then x = a− bi.

C(A) The set of continuous real-valued functions on A
Cn(A) The set of continuous real-valued functions on A whose partial

derivatives up to order n exist and are continuous.
C∞(A) The set of continuous real-valued functions on A whose partial

derivatives of all orders exist and are continuous.
· Used to specify a function with an implicit domain and range.

For example, if a ∈ Rn then 〈·, a〉 refers to the function f :
Rn → R given by f(x) = 〈x, a〉.

∆Y If Y is a finite set, then ∆Y is the set of probability distributions
over Y.

∆Y+ The set of positive probability distributions over Y.
〈x, y〉 Inner product. Unless otherwise specified, this is the standard

real inner product 〈x, y〉 =
∑
i xiyi.

bxc Floor of x: largest integer less than or equal to x.
7→ Also used to specify a function with an implicit domain and

range. For example x 7→ x2 refers to the function f : R → R
given by f(x) = x2.

Ai,:,: (MATLAB notation) If A ∈ Rd×W×L, then Ai,:,: :=
(Ai,j,k)j∈{1,...,W},k∈{1,...,L} ∈ RW×L.

R The real numbers
R+ The non-negative real numbers
R++ The positive real numbers

Rn1×n2×...×nd The set of d-dimensional rectangular arrays of real numbers such
that dimension i has size ni.

LReLU The function defined by LReLU(x) = max(x, 0.01x)
ReLU The function defined by ReLU(x) := max(x, 0)
Z The integers
Z+ The non-negative integers
Z++ The positive integers

59

Bibliography

[B+15] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends R© in Machine Learning, 8(3-4):231–357, 2015.

[BBL02] Thomas Bagby, Len Bos, and Norman Levenberg. Multivariate simultaneous approxima-
tion. Constructive approximation, 18(4):569–577, 2002.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[BCN18] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018.

[BH93] Rudolf Beran and Peter Hall. Interpolated nonparametric prediction intervals and confi-
dence intervals. Journal of the Royal Statistical Society. Series B (Methodological), pages
643–652, 1993.

[Boo81] Conte & Boor. Elementary Numerical Analysis; an Algorithmic Approach. McGraw Hill.,
1981.

[Bre94] Albert S Bregman. Auditory scene analysis: The perceptual organization of sound. MIT
press, 1994.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[CCL95] Tianping Chen, Hong Chen, and Ruey-wen Liu. Approximation capability in C(Rn) by
multilayer feedforward networks and related problems. IEEE Transactions on Neural
Networks, 6(1):25–30, 1995.

[CFS16] Keunwoo Choi, George Fazekas, and Mark Sandler. Automatic tagging using deep convo-
lutional neural networks. arXiv preprint arXiv:1606.00298, 2016.

[Cho17] François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv
preprint, pages 1610–02357, 2017.

[CWV+14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759, 2014.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

60

[EDM13] Gianpaolo Evangelista, Monika Dörfler, and Ewa Matusiak. Arbitrary phase vocoders by
means of warping. Musica/Tecnologia, 7:91–118, 2013.

[ESC+12] Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan
Tang, and Daniel Rasmussen. A large-scale model of the functioning brain. science,
338(6111):1202–1205, 2012.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learn-
ing, volume 1. Springer series in statistics New York, NY, USA:, 2001.

[Fol13] Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley &
Sons, 2013.

[FPF+18] Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel PW Ellis, Xavier Favory, Jordi
Pons, and Xavier Serra. General-purpose tagging of freesound audio with audioset labels:
Task description, dataset, and baseline. arXiv preprint arXiv:1807.09902, 2018.

[Fri01] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pages 1189–1232, 2001.

[GAG+17] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Con-
volutional sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[GEF+17] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on, pages 776–780. IEEE, 2017.

[GF93] Jean D Gibbons and Jean D Gibbons Fielden. Nonparametric statistics: An introduction.
Number 90. Sage, 1993.

[Grö13] Karlheinz Gröchenig. Foundations of time-frequency analysis. Springer Science & Business
Media, 2013.

[HACN90] Feng-hsiung Hsu, Thomas Anantharaman, Murray Campbell, and Andreas Nowatzyk. A
grandmaster chess machine. Scientific American, 263(4):44–51, 1990.

[HCE+17] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen,
R Channing Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn
architectures for large-scale audio classification. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on, pages 131–135. IEEE, 2017.

[HCL+17] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q
Weinberger. Multi-scale dense networks for resource efficient image classification. arXiv
preprint arXiv:1703.09844, 2017.

[HGN90] RM Hyatt, Albert E Gower, and Harry L Nelson. Cray blitz. In Computers, Chess, and
Cognition, pages 111–130. Springer, 1990.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In CVPR, volume 1, page 3, 2017.

[Hor93] Kurt Hornik. Some new results on neural network approximation. Neural networks,
6(8):1069–1072, 1993.

61

[HWT+15] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil,
Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al. An
empirical evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716,
2015.

[HZC+17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[JL] Il-Young Jeong and Hyungui Lim. Audio tagging system for dcase 2018: Focusing on label
noise, data augmentation and its efficient learning.

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[KSL18] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer
better? arXiv preprint arXiv:1805.08974, 2018.

[KWM16] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a hands-
on approach (3rd edition). Morgan kaufmann, 2016.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

[LCJB+89] Yann Le Cun, Lionel D Jackel, Brian Boser, John S Denker, Henry P Graf, Isabelle Guyon,
Don Henderson, Richard E Howard, and William Hubbard. Handwritten digit recognition:
Applications of neural network chips and automatic learning. IEEE Communications
Magazine, 27(11):41–46, 1989.

[LGP+90] Douglas B Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt, and Mary Shep-
herd. Cyc: toward programs with common sense. Communications of the ACM, 33(8):30–
49, 1990.

[LH16] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

62

[LTHS88] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-
propagation. In Proceedings of the 1988 connectionist models summer school, volume 1,
pages 21–28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

[LXTG17] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of
neural nets. arXiv preprint arXiv:1712.09913, 2017.

[LZS+17] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv
preprint arXiv:1712.00559, 2017.

[Mai10] VE Maiorov. Best approximation by ridge functions in l p-spaces. Ukrainian Mathematical
Journal, 62(3):452–466, 2010.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[MMKI17] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. arXiv
preprint arXiv:1704.03976, 2017.

[Mon17] Guido Montúfar. Notes on the number of linear regions of deep neural networks. 2017.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[MP16] Hrushikesh N Mhaskar and Tomaso Poggio. Deep vs. shallow networks: An approximation
theory perspective. Analysis and Applications, 14(06):829–848, 2016.

[MPCB14] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number
of linear regions of deep neural networks. In Advances in neural information processing
systems, pages 2924–2932, 2014.

[MR17] Brian McMahan and Delip Rao. Listening to the world improves speech command recog-
nition. arXiv preprint arXiv:1710.08377, 2017.

[MRL+15] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg,
and Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the
14th python in science conference, pages 18–25, 2015.

[Pet98] Pencho P Petrushev. Approximation by ridge functions and neural networks. SIAM
Journal on Mathematical Analysis, 30(1):155–189, 1998.

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017.

[Pin99] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195, 1999.

[Pin15] Allan Pinkus. Ridge functions, volume 205. Cambridge University Press, 2015.

[R+76] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New
York, 1976.

63

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. Technical report, California Univ San Diego La Jolla Inst
for Cognitive Science, 1985.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Swish: a self-gated activation func-
tion. arXiv preprint arXiv:1710.05941, 2017.

[S+04] Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combi-
natorics, 13:389–496, 2004.

[SGB+15] Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange, and Mark D
Plumbley. Detection and classification of acoustic scenes and events. IEEE Transactions
on Multimedia, 17(10):1733–1746, 2015.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[SNK11] Jan Schnupp, Israel Nelken, and Andrew King. Auditory neuroscience: Making sense of
sound. MIT press, 2011.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization?(no, it is not about internal covariate shift). arXiv
preprint arXiv:1805.11604, 2018.

[Tel15] Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

[TH12] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[TSF+16] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas
Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016.

[TYRW14] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the
gap to human-level performance in face verification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1701–1708, 2014.

[War17] Pete Warden. Speech commands: A public dataset for single-word speech recogni-
tion. Dataset available from http://download. tensorflow. org/data/speech commands v0,
1, 2017.

[WH60] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical report,
Stanford Univ Ca Stanford Electronics Labs, 1960.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

64

[WSH16] Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or deeper: Revisiting the
resnet model for visual recognition. arXiv preprint arXiv:1611.10080, 2016.

[XZ17] Mengxiao Lin Jian Sun Xiangyu Zhang, Xinyu Zhou. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv:1707.01083, 2017.

[Yar17] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 94:103–114, 2017.

[Yar18] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu net-
works. arXiv preprint arXiv:1802.03620, 2018.

[ZCDLP17] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[ZL16] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[ZUS+18] Neil Zeghidour, Nicolas Usunier, Gabriel Synnaeve, Ronan Collobert, and Emmanuel
Dupoux. End-to-end speech recognition from the raw waveform. arXiv preprint
arXiv:1806.07098, 2018.

65

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:
	fd@rm@6:
	fd@rm@7:

