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We experiment with compressing neural models via pruning and quantiza-
tion. We find that when pruning is performed without retraining, the HCS-
LASSO method dominates, with the caveat that it requires a subset of the
training data. We find that most methods, including random pruning, per-
form similarly when one-shot retraining is allowed, calling into question
the justification of pruning methods by their performance with retraining.
In contrast, Taylor pruning beats random pruning on a slowly-pruned trans-
ferred model. Finally, we experiment with quantization, replicating a num-
ber of results and confirming the effectiveness of several techniques.

1. INTRODUCTION

The popularity of smart routers, smartphones, and smartwatches,
creates a growing need to perform intelligent tasks on low-
power computers. Deep neural networks attain state-of-the-art
performance on many of these tasks, such as speech recogni-
tion, face detection, and text prediction; however, the computa-
tional requirements of large networks are prohibitive. For example,
AlexNet [Krizhevsky et al. 2012]] uses 725M floating-point opera-
tions (FLOPs) in a single forward pass. More recent architectures
like ResNet [He et al. 2016] and GoogLeNet [Szegedy et al. 2015]
are even more heavyweight. Thus, compressing large models is an
important problem for the deployment of neural models.

One method for neural network compression is to zero out un-
necessary weights, according to some criterion. Naturally, null
weights can then be discarded, resulting in a network with a smaller
memory footprint. Methods that follow this paradigm are said to be
“pruning” the neural network. In the present work, we empirically
evaluate pruning approaches by Louizos et al. [2017], Han et al.
[2015al], He et al. [2017]], Liu et al. [2017]], and Li et al. [2016al].

Another method for compression is to use fewer bits for rep-
resenting weights or activations; this paradigm is called quantiza-
tion. In the extreme case, single-bit quantization results in values of
41 [Hubara et al. 2016b|]. We examined quantization as described
in the texts by Hubara et al. [2016a] and Li et al. [2016b].

We developed a Pytorch [Paszke et al. 2017|] framework for
model compression, which we use for all our experiments.

2. PRUNING

Because deep neural networks are redundant, many of their weights
can be set to zero with minimal effect on performance [Han et al.
2015b]. While procedures that set weights to zero in an unstruc-
tured way reduce a network’s storage and memory consumption,
they do not reduce its computational cost, since neural networks
are implemented using dense linear algebra libraries that cannot
exploit unstructured sparsity. In contrast, we study methods for ze-
roing entire input or output channels of convolutional layers. Such
methods remove rows or columns from the underlying matrices
[[Chetlur et al. 2014], reducing computational cost.

2.1 Pruning Techniques

2.1.1 Channel Norm Pruning. This strategy, explored by Li et
al. [2016a], iteratively prunes the channel whose weights have the
smallest norm in a given layer. The idea is that channels with small
weight-norm are unlikely to be decisive in the final classification.
We consider two approaches for applying channel norm pruning to
the entire network. In the first, a fixed proportion of channels are
pruned from each layer. In the second, following Molchanov et al.
[2016]], we score each channel by diving its norm by the sum of the
norms of all channels in the same layer. Then we prune the channels
with the globally smallest scores across the network.

2.1.2  Random Pruning. Explored by Molachanov et al. [2016]]
and Mittal et al. [2018]], this approach zeros random channels of
the layers to which it is applied. We prune a fixed proportion of the
channels in each layer.

2.1.3 HZS-LASSO. To reduce the number of input channels
in a given convolutional layer from ¢; € Z4 to ¢; € Z,, this
procedure, proposed by He et al. [2017]], uses two stages. Let
Y € Re®3b be the vector whose entries store the layer’s output at
eachof ¢, € Z output channels and w2 € Z spatial locations for
every image in a training batch of size b € Z . Let A € Rbw3coxci
be the matrix whose entries are the same outputs separated accord-
ing to the contribution of each input channel. Thus summing the
rows of A yields Y. In the first stage of the procedure, we find a
function 8 : R, — R¢ satisfying

B(X) € argmin||Y — AB|I* + [ 8]l1 (1
BERC

by tracing the LASSO regularization path (See Friedman et al.
[2001]] chapters 3.4 and 3.8. We use Scikit-learn’s lasso_path
function [Pedregosa et al. 2011].). We then select \* := inf{)\ €
Ry : IBV)]lo £ ¢} and B* := B(A*). We prune input chan-
nels corresponding to zero entries of 5*. In the second stage we
find new weights for the pruned convolutional layer by minimiz-
ing the Euclidean norm of the difference between the output of the
full convolutional layer and the output of the pruned convolutional
layer over a subset of the training set. In this way, we seek to prune
input channels with minimal change to the output of the convolu-
tional layer. We repeat this process for each layer, pruning the same
proportion of weights in each. HZS-LASSO requires training data,
unlike the other methods we consider, but this data need not be the
entire training set: in our experiments we use 500 images from a
training set of 50000.

2.1.4 Network Slimming. This approach, described in Liu et
al. [2017]], adds a penalty term to the loss function during train-
ing equal to a weight times the sum of the absolute values of all



the batch-normalization scale factors in the network. At the end of
training, those channels corresponding to the smallest batch-norm
scale factors are pruned. Intuitively, since batch normalization re-
sults in each channel having approximately zero mean and unit
variance across a batch, channels multiplied by small scale factors
after batch normalization are likely insignificant. To verify our im-
plementation, we closely reproduced some results from Liu et al.

[2017]] on Resnet-164.

2.1.5 Taylor. Let (h;);cr denote the scalar outputs produced
by a given channel of a convolutional layer across all spatial loca-
tions. The magnitude of the effect on the loss function £ of setting
this channel to zero can be approximated by first-order differen-
tial approximation as |3, ; h; 2= |. The Taylor pruning approach
proposed by Molchanov et al. assigns a score to every out-
put channel of a convolutional layer equal to its |>,_; h; g—}i |. The
score is computed image-by-image, and then averaged over a sub-
set of the images in the training set. Those channels with the lowest
score are pruned. The idea is to prune channels whose components
have a relatively small effect on the final classification. The deriva-
tives % are computed during normal back-propagation, and con-
sequently this approach is computationally cheap. To facilitate the
comparison of scores between layers, the authors divide the score
of every channel by the square root of the sum of the squares of the

scores of all channels in the same layer. We use the same approach.

2.1.6  Stochastic ly Regularization. During training Louizos et
al. multiply each output channel of a convolutional layer
by a random variable, which serves as a gate. Each gate is dis-
tributed according to the Hard Concrete distribution
et al. 2016]}, which approximates the Bernoulli distribution, but has
nonzero density in (0,1). A parameter c, which controls the fre-
quency with which the gate is on, is learned during training, and
a term is added to the loss function penalizing gates that are fre-
quently on. At test time, the probabilistic gates are converted to
deterministic multipliers based on the values of . Channels with
zero multipliers are pruned. To verify our implementation of this
complicated technique, we replicated the settings of some experi-
ments on MNIST performed in the paper. Our results closely re-
semble those described by Louizos et al. [2017]], and we attribute
the differences to the highly stochastic nature of this scheme.

3. QUANTIZATION

Traditionally, weights and activations are represented using 32-bit
floating point numbers. However, as past work has shown, such
precision is not required for good performance in neural inference;
most of the weights tend to be “close” to zero, suggesting they can
be quantized to fewer bits. In the extreme case, weights and activa-
tions have been quantized to 1, resulting in massive memory and
computational savings.

In this work, we explore BinaryConnect
[2015]l, binarized neural networks (BNNs) [Hubara et al. 2016al,

and ternary weight networks (TWNs) [Li et al. 2016b].
3.1 Quantization Techniques

3.1.1 BinaryConnect. In BinaryConnect [Courbariaux et al|
2015]], weights are limited to 1. Specifically, the floating point
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Fig. 1. Ternary quantization

weights w are passed through a quantization function w = f(w) =
2[5 (w) —1 before being used in the layers, where I is the indicator
function. In order to backpropagate through this non-differentiable

function, the straight-through estimator [Hinton 2012] is used:
oL 0L
ow 0w
Additionally, floating point weights are clipped to [—1, 1] after
each optimization step. Since the weights are extremely large by
neural network standards, the authors apply batch normalization
after every binary layer.

3.1.2 Binarized neural networks. In BNNs, Hubara et al.
[2016al] propose binarizing activations in addition to weights. They
use “binary tanh,” a binary activation function:

BinTanh(z) = 2[0(z) — 1

OBinTanh |1 if—-1<z<1
dx |0 otherwise

The paper also derives a binary version of batch normalization,
where nearly all multiplications are approximated by bit-shifts in-
stead (power of 2 multiplication). Surprisingly, binary batch norm
results in no perceived loss in accuracy.

3.1.3 Ternary weight networks. TWNs allow for weights to
be one of {—1,0,1}. Instead of approaching this problem heuris-
tically as in BinaryConnect, Li et al. (2016) explicitly solve

argmin,  [|W — aW|[3, where
-1 ifW,; < -A

0 otherwise

Empirically, they find that W is roughly normally or uniformly
distributed, so they choose e and A accordingly.

3.1.4 8-bit linear quantization. A real matrix W € R™*" is
said to be linearly quantized if there exists an affine mapping

W = a(W +b)

where W e Zm*" 7, = {0,1,...,255}. In practice, libraries
like gemmlowal offer efficient support for 8-bit quantized matrix
multiplication. We applied this scheme to the weights.

Thttps://github.com/google/gemmlowp
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Fig. 2. Accuracy as a function of forward-pass multiplies. The reported
accuracy for random pruning is averaged over 100 random choices of chan-
nels to prune.

4. EXPERIMENTS
4.1 Pruning Experiments and Discussion

4.1.1 Without Retraining. We begin with Resnet-29 [He et al.
2016 trained for 100 epochs on CIFAR10 [Krizhevsky and Hinton
2009] with the cosine annealing learning rate schedule described
by Loshchilov and Hutter [2016] and an initial learning rate of 0.2.
We use weight decay of 0.0001 and momentum of 0.9. In addition
to standard cropping and horizontal flipping data augmentation, we
also use random erasure as described by Zhong et al. [2017]]. We
simply apply the pruning techniques to the trained model and report
the resulting accuracy as a function of the number of floating-point
multiplies performed in a forward pass.

As Figure [] shows, the global methods (Taylor, slimming, and
global channel norm) achieve high accuracy at low levels of prun-
ing, but dramatically worsen around 3.25 x (10)7 multiplies. One
possible explanation is that the global methods greedily select
channels which separately are of little importance but collectively
matter a great deal, causing a collapse in accuracy when a signifi-
cant proportion of these channels are pruned. In the case of Taylor
pruning, we can also argue that as more channels need to be pruned,
the difference between the activations of pruned network and the
original network reach a point at which the Taylor approximation
becomes useless. To further investigate the precipitous decline in
accuracy of the global methods, we recorded which channels were
pruned around the dramatic accuracy drop. We discovered that at
the point of the drop, many channels from the final layers of resid-
ual blocks were pruned. Hoping to use this to improve the Taylor
method, we implemented a version that simply never pruned from
final residual layers. However, this version performed even worse,
suggesting that careful hand-tuning of layer priorities would be re-
quired to develop a pruning method in this vein.

Figure[2]also shows the superiority of the HZS-LASSO method.
It is natural to ask whether either the first stage, in which the chan-
nels to prune are selected by LASSO regularization, or the second
stage, in which least-squares is used to adjust the weights of the
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Fig. 3. Accuracy as a function of forward-pass multiplies.
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Fig. 4. Accuracy as a function of forward-pass multiplies (zoomed in).

pruned convolutions, is key to the performance of the method. To
explore this question, we experimented with applying least-squares
weight adjustment to a network pruned by channel-norm pruning.
As the line labeled “Adjusted Channel Norm” shows, the result-
ing method is better than basic channel-norm pruning but worse
than HZS-LASSO. We also experimented with using only the first
stage of the HZS-LASSO procedure. That is, we solved for 5%,
pruned channels corresponding to zero entries of 5%, and re-scaled
the weights of the other channels by their corresponding entry in
[*. The method, labeled ”Pure LASSO”, performs well, but worse
than HZS-LASSO. Together these results indicate that both com-
ponents of the HZS-LASSO method are important: LASSO reg-
ularization selects channels that can be pruned, and least squares
weight adjustment partially compensates for their pruning.

4.1.2 With Retraining. We use Resnet-29 trained with the
same settings as above. We then restart training, and apply the
pruning technique over the course of 10 epochs (except for HZS-
LASSO, which we apply in one-shot). We continue to train the
model for 90 epochs, and report the resulting accuracy. Figures E|



VGG-like network transfered from CIFAR100 to mini-CIFAR10
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Fig. 5. Accuracy as a function of forward-pass multiplies. Accuracies for
Taylor and Channel Norm are averaged over 5 runs, while accuracies for
Random are averaged over 10 runs.

and [f] show the results. For comparison, we also plot the accuracy
of a neural network with the same architecture as the channel-norm
pruned network, but trained from scratch with randomized initial
weights. A first observation is that for low levels of pruning, all
methods beat the from-scratch baseline, suggesting that after prun-
ing, information is retained from the larger model. A second obser-
vation is that, unlike in the no-retraining case, here the accuracies
of almost all methods are close, and remain high at low and moder-
ate degrees of pruning. Indeed, random pruning is the second-best
performing method at high levels of pruning. This suggests that
some recent papers, which devise pruning methods and then offer
the performance of the pruning method after retraining as evidence
of its efficacy (e.g. [Liu et al. 2017])), are in error: most methods
perform similarly after retraining. The finding that random pruning
performs well after retraining agrees with the recent paper of Mit-
tal et al. [2018]], who argue that this a consequence of the inherent
redundancy of neural networks, and is analogous to the recovery
of a patient after brain injury. Lastly, we discuss the [, method of
Louizos et al. [2017]]. We decided to compare this unique method to
the with-retraining methods, since to adjust its degree of pruning,
one must retrain the entire network. In this comparison, the method
performed poorly in out experiments, and was not competitive with
much simpler methods. We experimented with applying different
degrees of regularization to different layers within a residual block,
or across residual blocks, and with only applying stochastic gates
to certain layers. None of these approaches yielded appreciable im-
provement in the [y method.

4.1.3 Transfer Learning. The results of the previous section
establish that, for the Resnet-29 model we investigated, when re-
training is feasible, the choice of pruning method is not extremely
significant. While few papers conduct detailed comparisons of
channel pruning methods, Molchanov et al. [2016] do so in the
context of transfer learning, wherein a model trained to perform
one task on a large dataset is adapted to perform a different but
related task on a smaller dataset, and then pruned. They find that
the choice of pruning method is quite significant, in contrast to our

Method CIFAR-10 Accuracy  CIFAR-100 Accuracy
BinaryConnect 90.05% 68.41%
BNNs 87.88% 66.91%
TWNs 92.7% 70.36%
8-bit 92.92% 70.85%
Vanilla 93.21% 71.16%
Table I.
Quantization

results in the previous section. To provide evidence supporting or
contradicting their findings, we conducted a small empirical study
of transfer learning. Molchanov et al. [2016| transfer from Ima-
geNet to a dataset of bird photos. Since we lack the time to train om
ImageNet, we instead transfer from CIFAR100 to a dataset we call
MINICIFARI0. MINICIFAR10 has the same test set as CIFAR10,
and has a validation set consisting of 1000 CIFAR10 images, but
has only 200 images in its training se We train a VGG-like net-
work on CIFAR100 for 100 epochs via SGD with a learning rate of
0.03, momentum of 0.9, and weight decay of 0.0001. We then re-
place the final layer of the network with one with 10 outputs instead
of 100, train the network for 200 more epochs on MINICIFARI10,
then alternate between pruning one channel and training one epoch
until the desired degree of pruning is reached, then train for a fur-
ther 200 epochs. We report the results in Figure [5] Unlike in the
previous experiment, here a sophisticated method (Taylor), is able
to soundly beat random pruning.

4.2 Quantization Experiments

We report results on CIFAR-10 and CIFAR-100. We use a variant
of VGG-16 described in Hubara et al.’s work [Hubara et al. 2016al.
We used a learning rate of 0.1, which is reduced by a factor of 10
if validation accuracy does not improve for 15 epochs. The results
align well with the intuition behind the techniques.

5. CONCLUSION

When some training data is available but resource constraints pre-
vent retraining via backpropagation, we recommend the HZS-
LASSO pruning method. When retraining is possible and the task
for the pruned model is the same as for the original model, the
choice of pruning method seems not to matter much. To perform
transfer learning with slow pruning, the Taylor method is a good
choice. Quantization schemes can improve the efficiency of deep
neural networks without much loss of accuracy, although they make
training slower and more difficult.

A question raised by our work is that of the relationship between
the results of sections[f.1.2]and[4.1.3] Can the contrast between the
results be explained entirely by the slow pruning schedule used in
which probably improves the Taylor method by making the
first-order approximation more accurate? Or is transfer learning a
favorable setting for pruning, perhaps because sophisticated meth-
ods can identify channels relevant to the old task but not the new
task. We performed preliminary experiments that may indicate that
both factors are operative, but further investigation is required.

2 A VGG-like model trained for 1000 epochs on this dataset without transfer
learning dos not learn anything, achieving an accuracy of about 0.1
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