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1 Introduction

1.1 Inverse Problems

The theory of inverse problems models situations in which an observer knows the general laws
governing a phenomenon but does not know certain particulars. The observer wishes to learn these
particulars using the general laws and some imperfect observations. To give scienti�c examples,
a radiologist may use knowledge of the general laws governing the attenuation of radiation and
observations of the degree to which beams passing through a patient's body attenuate to draw
conclusions about the composition of the patient's body; or a geologist may use knowledge of how
waves propagate through the ground and a database of seismic measurements to draw conclusions
about the makeup of the earth's crust. Many statistical problems are also inverse problems. A
statistician may use observations of the independent and dependent variables and knowledge
about how di�erent candidate models relate those variables to draw conclusions about which
model is correct.

1.2 Main Examples

This essay treats the mathematics of a particular class of inverse problem, in which a linear trans-
formation Φ� representing the known general law� has been applied to a hidden state vector x∗�
representing the unknown particulars� to produce a result vector b� representing our observations.
We seek to recover x∗, but we cannot do so directly, because Φ is not injective, and b may have
been corrupted by error. To assist us, we have some additional knowledge, which tells us that x∗

lies in the set S. We hope to use b,Φ, and S to recover x∗. To summarize

Problem 1. Let X,W be Euclidean spaces, and let S ⊂ X. Our goal is to recover x∗ ∈ S from
the data (Φ, ε, b) where Φ : X →W is linear, ε ≥ 0 and ‖Φx∗ − b‖ ≤ ε.

For general S there is little we can do to e�ciently solve Problem 1. Additional knowledge
of the structure of S allows us to make headway. The following examples illustrate the kind of
problems in which we are interested.

Example 1. Let x∗ ∈ Rn, and let Φ ∈ Rm×n where m < n. We are given b ∈ Rm such that
‖b−Φx∗‖ ≤ ε, and we know that x∗ lies in S, the set of vectors with at most k nonzero elements.
Such vectors are called k-sparse. We wish to recover x∗.
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In statistics, this example and its variants are called the LASSO[18]. The (i, j) entry of Φ is
observation i of independent variable j, while the i entry of b is observation i of the dependent
variable. The condition x ∈ S is a parsimony assumption; we know that the dependent variable
depends on only a few independent variables, but we do not know which ones.

This sparse-recovery example also arises in engineering applications. To brie�y mention one,
a radar device emits an electromagnetic pulse, which interacts with objects in the environment
(See chapter 1 of Foucart and Rauhut[6]). The resulting scatter is measured by a receiver. Here
each entry of x∗ corresponds to a particular location and speed, and is nonzero when there is an
object at that location moving at that speed. Φ maps x∗ to b, the data measured by the receiver,
and we seek to recover x∗. Often, there are only a small number of objects in the environment,
and so it is reasonable to assume x∗ is sparse.

Example 2. Let x∗ ∈ Rn1×n2 , and let Φ : Rn1×n2 → Rm be linear where m < n1n2. We are
given b ∈ Rm such that ‖Φ(x∗)− b‖ ≤ ε, and we know that x∗ ∈ S := {x ∈ Rn1×n2 : rankx ≤ r}.

Low rank matrix recovery has applications in audio-visual data processing, and in bioinfor-
matics, where underlying structure of the signals often makes them representable as low-rank
matrices [19].

Examples 1 and 2 admit a uni�ed solution strategy, which we introduce in Section 2.

2 The Atomic Norm Paradigm

Chandrasekaran et al.[3] introduced the approach we describe here. We assume we have a set
A ⊂ X, called the atoms. We de�ne for positive integers k the sets

Ak :=

{
k∑
i=1

αiai : ∀i αi ≥ 0, ai ∈ A

}
. (1)

That is to say, Ak consists of the conic combinations of k elements of A. Thus we have1

A ⊂ A1 ⊂ A2 ⊂ . . . ⊂ coneA. (2)

We impose the condition that the S of Problem 1 satis�es S = Ak for some k. Next, we show
that examples 1 and 2 satisfy this condition.

Example 1 (Continued). A = {±e1, . . . ,±en} and S = Ak, the set of k-sparse vectors.

Example 2 (Continued). A = {xyT : x ∈ Rn1 , y ∈ Rn2 , ‖x‖ = ‖y‖ = 1}. Since the sum of k
rank-1 matrices has rank at most k, and every rank k matrix can be written as the sum of k rank
1 matrices (see section 51 in Halmos[11]), we have {A ∈ Rn1×n2 : rank(A) ≤ k} = Ak = S.

For small k, we expect Ak to be nonconvex and therefore di�cult to work with. It is natural
to introduce a convexi�cation to make our task more tractable. To this end, de�ne the function
γ : X → R by

γ(x) := inf{λ > 0 : x ∈ λ convA} (3)

1Since coneA = R+ convA, by Carathéodory's theorem(III.1.3.6 in Hiriart-Urruty and Lemaréchal[12]) the
sequence of sets in (2) does not go on endlessly. Rather, if n is the ambient dimension, then An+1 = coneA.
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where we use the convention that inf ∅ = ∞. As the gauge function of a convex set, γ is convex
and sublinear (see V.1.12 in Hiriart-Urruty and Lemaréchal[12]). Though γ need not be a norm
in general, it is called the atomic norm, since it is a norm in examples of interest. Our aim is to
approximate the solution of Problem 1 by solving

Problem 2.

minimize γ(x) subject to Φx = b (4)

when ε = 0 and solving

Problem 3.

minimize γ(x) subject to ‖Φx− b‖ ≤ ε (5)

when ε > 0.

Example 1 (Continued). Here γ = ‖·‖1. Problems 2 and 3 become

minimize ‖x‖1 subject to Φx = b (6)

minimize ‖x‖1 subject to ‖Φx− b‖ ≤ ε. (7)

According to Amelunxen et al.[1] this approach to sparse recovery was �rst considered by Chen
et al.[4].

Example 2 (Continued). Let ‖·‖∗ denote the nuclear norm, which is discussed in somewhat
more detail in section B. The nuclear norm of a matrix is the sum of its singular values. In this
example, we have

convA = {
q∑
i=1

αixiy
T
i , ‖xi‖ = ‖yi‖ = 1, αi ≥ 0 ∀i,

q∑
i=1

αi = 1, q > 0} (8)

= {X ∈ Rn1×n2 : ‖X‖∗ ≤ 1} =: B∗. (9)

The ⊂ part of the second equality follows since ‖
∑q

i=1 αixiy
T
i ‖∗ ≤

∑q
i=1 αi‖xiyTi ‖∗ = 1. The ⊃

part follows since if X ∈ B∗ then the singular value decomposition of X displays X as a convex
combination (If the sum of the singular values is less than one, terms of the form xyT − xyT can
be added in an appropriate quantity.)

Thus we have γ = ‖·‖∗. Problems 2 and 3 become

minimize ‖x‖∗ subject to Φx = b (10)

minimize ‖x‖∗ subject to ‖Φx− b‖ ≤ ε. (11)

According to Amelunxen et al.[1] this approach to low-rank recovery was �rst considered by Recht
at el.[15].

That Problems 2 and 3 relate usefully to Problem 1 is not obvious. One might worry that
substituting the convex function γ for the nonconvex set Ak suppresses important information.
Presently, we shall provide intuitive motivation for the connection between Problem 1 and its
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convexi�cations. Then, we shall devote the greater part of this essay to a more rigorous analysis
of the connection.

To begin, for x ∈ X de�ne the sets

T(x) := cl{α(y − x) : α ≥ 0, y ∈ X, γ(y) ≤ γ(x)} (12)

N(x) := T ◦(x) = {s ∈ X : 〈y − x, s〉 ≤ 0 ∀y ∈ X such that γ(y) ≤ γ(x)}. (13)

T(x) is the tangent cone of the set (γ(x) convA) at x. N(x) is the corresponding normal cone.
Using T(x) we can establish optimality conditions for Problems 2 and 3.

Proposition 1 (From Propositions 2.1 and 2.2 in Chandrasekaran et al [3]).

1. If x ∈ X satis�es Φx = b and null Φ∩T(x) = {0} then x is the unique solution to Problem
2.

2. Let x̂ solve Problem 3. If x ∈ X sastis�es ‖Φx− b‖ ≤ ε and if for some δ > 0 all z ∈ T(x)
satisfy ‖Φz‖ ≥ δ‖z‖ then ‖x− x̂‖ ≤ 2 εδ .

Proof.

1. If γ(y) ≤ γ(x) and Φy = b then y − x ∈ T(x) and y − x ∈ null Φ so that y = x.

2. Since γ(x̂) ≤ γ(x), we have that x̂− x ∈ T(x). Thus

‖x̂− x‖ ≤ 1

δ
‖Φ(x̂− x)‖ ≤ 1

δ
(‖Φx̂− b‖+ ‖Φx− b‖) ≤ 2

ε

δ
(14)

as desired234.

Remark 1. In subsequent sections, we will use Proposition 1 to connect Problem 1 to its convex-
i�ctions, Problem 2 and Problem 3. We will argue that, in the examples of interest, if x ∈ Ak for
small k, then N(x) is large, and consequently its polar T(x) is small. Because T(x) is small, the
nullspace of a randomly chosen Φ is likely to lie far from it, and so the hypotheses of Proposition
1 are likely to be satis�ed. Hence x is likely to solve Problem 2 or approximately solve Problem
3. Note the importance of randomness to this argument. Our key results will hold with high
probability, but not with certainty.

Example 1 (Continued). We know from class that ‖·‖1 is the support function of the unit
ball of its dual norm, ‖·‖∞. Call this ball B∞ We know from Proposition A.13 that this im-
plies that ∂‖x‖1 = {s ∈ B∞ : 〈x, s〉 ≥ 〈x, z〉 ∀z ∈ B∞}. This set is clearly {s ∈ Rn : si =
sign(xi) if xi 6= 0 , si ∈ [−1, 1] if xi = 0}. By Proposition A.19,

N(x) = R+∂‖x‖1 = {s ∈ Rn : si = t sign(xi) if xi 6= 0 , si ∈ [−t, t] if xi = 0, t ≥ 0}. (15)

Thus N(x) grows larger as x grows sparser.
2The �rst part of Proposition 1 is actually a special case of the second part, since we can use the continuity of

Φ and the compactness of the unit sphere to show that if null Φ ∩ T(x) = {0} then there is an appropriate δ.
3If T(x) is replaced by {α(y − x) : α ≥ 0, y ∈ X, γ(y) ≤ γ(x)} then the condition in the �rst part is both

necessary and su�cient. This is the approach used in Chandrasekaran et al [3].
4The proof depends only on γ being convex, and not on γ being the gauge function of the convex hull of atoms.

We assume γ has this later structure because such γ tend to have tangent cones with the properties we desire.
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Figure 1: A simple illustration of Example 1. The normal cone of the sublevel set of ‖·‖1 is much
larger at the 1-sparse point (0, 1) than at the 0-sparse point (0.5, 0.5).

Example 2 (Continued). Let UDV T be the singular value decomposition of x, where U ∈
Rm×r, D ∈ Rr×r, V ∈ Rn×r and rank(x) = r. Using Propositions A.19 and B.1, we have

N(x) = R+∂‖x‖∗ = {tUV T +W : WV = 0, UTW = 0, ‖W‖ ≤ t, t ≥ 0}. (16)

Here N(x) grows larger as the rank of x decreases.

3 Gaussian Width

To make rigorous the ideas of Remark 1, we need a useful means of measuring the size of a convex
cone. Any convex cone K ⊂ X corresponds via isomorphism to a spherically convex 5 subset P of
the unit sphere S2. The isomorphism and its inverse are de�ned by P = K ∩ S2 and K = R+P
respectively. This isomorphism suggests measuring the size of K by measuring P . This is the
strategy we will employ, following Chandrasekaran et al.[3].

De�nition 1. Let P ⊂ X be compact. De�ne the Gaussian Width of P to be

w(P ) := IE sup
z∈P
〈g, z〉 (17)

where g is a standard Gaussian vector.

5A subset P of the unit sphere is spherically convex if whenever x, y ∈ P and the angle between x and y is less
than π, the great circle path from x to y also lies in P . See section 6.5 of Schneider and Weil[16].
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We will measure the size of a cone K by computing the Gaussian width of K∩S2. Proposition
3 below alleviates some of the di�culty involved in calculating this width. Before we can prove
Proposition 3, we will need an auxiliary result describing the support function of a closed convex
cone. In what follows for any set C we denote by σC its support function.

Proposition 2 (Example V.2.3.1 Hiriart-Urruty and Lemaréchal[12]). Let K ⊂ X be a closed
convex cone. We have

σK(x) =

{
0 if x ∈ K◦

∞ else
=: IK◦ (18)

the indicator function of the polar cone.

Proof. Given x ∈ X, apply the Morreau decomposition (Proposition A.5) to write

x = y + z (19)

with y ∈ K, z ∈ K◦, 〈y, z〉 = 0. Then

σK(x) = sup
s∈K
〈y + z, s〉 ≥ sup

α≥0
〈y + z, αy〉 = sup

α≥0
α‖y‖2. (20)

So σK(x) =∞ for x /∈ K◦. For x ∈ K◦, 〈x, s〉 ≤ 0 for all s ∈ K and σK(x) = 0 as desired.

Proposition 3 (Proposition 3.6 in Chandrasekaran et al.[3]. Proof is signi�cantly modi�ed). Let
K be a nonempty closed convex cone. Let g denote a standard Gaussian vector. Then

w(K ∩ Sn−1
2 ) ≤ IE d(g,K◦) (21)

where d(g,K◦) is the Euclidean distance between g and K◦.

Proof.

w(K ∩ S2) (22)

= IE sup
z∈K∩S2

〈g, z〉 (23)

≤ IE sup
z∈K∩B2

〈g, z〉 Since S2 ⊂ B2 (24)

= IEσK∩B2(g) Def of σK∩B2 (25)

= IE cl conv min(σK , σB2)(g) By Proposition A.9 (26)

= IE cl conv min(IK◦ , ‖·‖)(g) By Proposition 2 (27)

= inf{(1− α)‖x‖ : x ∈ X, y ∈ K◦, 0 ≤ α ≤ 1, (1− α)x+ αy = g} By Proposition A.3 (28)

= inf{‖x‖ : x ∈ X, y ∈ K◦, x+ y = g} (29)

= IE d(g,K◦). (30)
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4 Concentration of Measure

In section 3 we established Gaussian width as our means for measuring the size of a tangent
cone. We next need to connect the Gaussian width of a tangent cone to the likelihood that the
hypotheses of Proposition 1 are satis�ed for random Φ. To make this connection, we will require
two theoretical tools. The �rst is a concentration of measure result, whose statement and proof
come from Tao[17].

Proposition 4 (Concentration of measure for Lipshitz functions of Gaussian random variables).
[Theorem 2.1.12 in Tao[17]] Let F : X → R be Lipshitz with Lipshitz constant L. Let g be a
standard Gaussian vector on X. Then for λ > 0

P (F (g)− IEF (g) ≥ λ) ≤ exp(−C λ
2

L2
) P (F (g)− IEF (g) ≤ −λ) ≤ exp(−C λ

2

L2
) (31)

for a �xed constant C > 0.

Proof. We shall prove this only for continuously di�erentiable functions with ‖∇F‖ ≤ L. The
proof can be extended to Lipshitz functions by a limiting argument that we shall not include here6.
We shall only work on the probability P (F (g)−IEF (g) ≥ λ), noting that P (F (g)−IEF (g) ≤ −λ)
can be dealt with by considering −F . Our approach will be to study the behavior of the moment
generating function de�ned by IE exp(tF (g)) for t > 0, and then to relate this behavior to the
probability of interest.

We begin by replacing F with F − IEF (g) so that the new F satis�es IEF (g) = 0. It is
clearly su�cient to prove the result for this new F . Proposition C.2 (Jensen's Inequality), and
the convexity of the exponential imply that for any t ∈ R,

1 = exp(t IEF (g)) ≤ IE exp(tF (g)). (32)

Let h be an independent identically distributed copy of g. Then

IE exp(tF (g)) ≤ IE exp(tF (g)) IE exp(−tF (h)) by (32) (33)

= IE exp(t(F (g)− F (h))) by independence (34)

From now on we will assume t > 0. We next study the quantity F (g)−F (h) by applying the
fundamental theorem of calculus along a circular arc:

F (g)− F (h) =

∫ π
2

0

d

dθ
F (h cos θ + g sin θ) dθ. (35)

This operation will prove useful later because gθ := h cos θ + g sin θ and its θ-derivative g′θ :=
−h sin θ + g cos θ are independent identically distributed Gaussian vectors. This follows from

6Though I have not worked it out in detail, I believe the limiting argument refereed to above can be constructed
using tools from Chapter 8 of Folland[7]. The key idea would be to de�ne a family of continuously di�erentiable
nonegative functions {φt}t>0 such that

∫
φt = 1, and each φt is supported on B2(0, t). This would ensure that the

continuously di�erential convolutions φt ∗ F converge usefully to F as t ↓ 0.
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Proposition C.6 and the rotational invariance of the distribution of a standard Gaussian vector.
Before making use of this independence, however, we compute

exp(t(F (g)− F (h))) (36)

= exp

(
t

∫ π
2

0
〈∇F (gθ), g

′
θ〉 dθ

)
(37)

= exp

(
t

∫ 1

0

π

2
〈∇F (gπ

2
β), g′π

2
β〉 dβ

)
Change of variables θ =

π

2
β (38)

≤
∫ 1

0
exp

(
t
π

2
〈∇F (gπ

2
β), g′π

2
β〉
)

dβ. Apply Proposition C.2 (Jensen's inequality) (39)

Next we take the expectation of both sides and use Fubini-Toneli to swap the order of integration
(which works since the boundedness of ∇F makes the integral �nite). We have

IE (exp(t(F (g)− F (h)))) (40)

≤
∫ 1

0
IE exp

(
t
π

2
〈∇F (gπ

2
β), g′π

2
β〉
)

dβ. (41)

We proceed by using Proposition C.3. For �xed β, we de�ne the function Qβ : X → R by

Qβ(x) := IE exp
(
t
π

2
〈∇F (x), g′π

2
β〉
)
. (42)

For �xed x, if ∇F (x) 6= 0 then by Proposition C.5 π
2 〈∇F (x), g′π

2
β〉 is a normal random variable

with 0 mean and variance π2

4 ‖∇F (x)‖2 . If ∇F (x) = 0, then π
2 〈∇F (x), X ′π

2
β〉 is a degenerate

random variable concentrated at 0. Using Proposition C.7 in the former case and simple algebra
in the later, we have

Qβ(x) (43)

= exp(t2
π2

8
‖∇F (x)‖2) (44)

≤ exp(t2
π2

8
L2). (45)

Now by Proposition C.3 and by the independence of gπ
2
β g
′
π
2
β we have

IE exp
(
t
π

2
〈∇F (gπ

2
β), g′π

2
β〉
)

(46)

= IEQβ(gπ
2
β) (47)

≤ exp(t2
π2

8
L2). (48)

Combining the previous steps, we have proven the bound

IE exp(tF (g)) ≤ exp(t2
π2

8
L2). (49)
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It remains only to convert this into a bound on the tail probability of F (X). Assuming t > 0 we
have

P (F (X) ≥ λ) (50)

= P (exp(tF (X)) ≥ exp(tλ)) by monotonicity of exp(t·) (51)

≤ exp(−tλ) IE exp(tF (X)) by Prop C.1 (Markov) (52)

≤ exp(t2
π2

8
L2 − tλ) by (49) (53)

= exp(−2
λ2

π2L2
) by minimizing with respect to t (54)

Thus we have proven (31) with C = 2
π2 .

5 Gordon's Comparison Theorem

Having proved our concentration of measure result, we move on to Gordon's theorem, the second
theoretical tool required to connect Gaussian width with the hypotheses of Proposition 1. Gor-
don's theorem bounds the expected minimum of of the function ‖Φ(·)‖ on a subset of the unit
sphere when Φ is randomized. This is useful because of the importance of ‖Φ(·)‖ to Proposition
1.

In what follows, we will let λn :=
√

2
Γ(n+1

2
)

Γ(n
2

) , the expected Euclidean norm of a standard

Gaussian vector in n-dimensional Euclidean space (see Proposition C.10).

Proposition 5. [Corollary 1.2 in Gordon[8]] Let Ω be a closed subset of the unit sphere in the
n-dimensional Euclidean space X. Let Φ be a random linear transformation from X to Rm such
that its matrix with respect to an orthonormal basis has independent, identically distributed
Gaussian entries with zero mean and variance one. Then

IE min
z∈Ω
‖Φz‖ ≥ λm − w(Ω). (55)

Proof. This result follows from Theorem 1.4 in Gordon[10], but that result has an extremely long
and involved proof. We omit it.

5.1 The Value Function

As mentioned above, the quantity ‖Φx‖ links Gordon's theorem (Proposition 5) to Proposition
1. Here we prove a simple result to further describe this quantity. As usual let X be a Euclidean
space. LetM(X) be the linear transformations on X. Let Ω be a closed subset of S2, the unit
sphere in X. De�ne the function v :M(X)→ R by

v(Φ) = min
z∈Ω
‖Φz‖. (56)

Proposition 6. v is 1-Lipshitz in the operator norm(and thus in the Frobenius norm).
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Proof. Let Φ1,Φ2 ∈M(X). Since Ω is compact there exists z1, z2 ∈ Ω such that

‖Φ1z1‖ = v(Φ1) (57)

‖Φ2z2‖ = v(Φ2) (58)

So

v(Φ1)− v(Φ2) (59)

≤ ‖Φ1z2‖ − v(Φ2) de�nition of v(Φ1) (60)

= ‖Φ1z2‖ − ‖Φ2z2‖ (58) (61)

≤ ‖(Φ1 − Φ2)z2‖ triangle inequality (62)

≤ ‖Φ1 − Φ2‖‖z2‖ def of operator norm (63)

= ‖Φ1 − Φ2‖ Ω ⊂ S2. (64)

So v(Φ1)− v(Φ2) ≤ ‖Φ1 − Φ2‖. Swapping the role of Φ1 and Φ2, and combining the result with
the above, we have

|v(Φ1)− v(Φ2)| ≤ ‖Φ1 − Φ2‖. (65)

6 Main General Recovery Result

Armed with the concentration of measure result (Proposition 4) and Gordon's Theorem (Propo-
sition 5), we are ready to prove Proposition 7, which relates the probability that a given x will
solve Problem 2 or Problem 3 to the size of the corresponding tangent cone.

Proposition 7 (Corollary 3.3 in Chandrasekaran et al.[3]). Let X be an n-dimensional Euclidean
space. Let Φ be a random linear transformation from X to Rm whose matrix with respect to
an orthonormal basis has independent identically distributed Gaussian entries with variance 1

m .
Let γ be as in Section 2, and assume γ is �nite. Let x∗ ∈ X. Let T (x∗) be as in Section 2. Let
Ω = T (x∗) ∩ S2.

1. Let b = Φx∗. Assume

m ≥ w(Ω)2 + 1. (66)

Then x∗ will be the unique solution to Problem 2 with probability exceeding

1− exp
(
−C (λm − w(Ω))2

)
(67)

where C > 0 is as in Proposition 4.

2. Let b = Φx∗ + ν where ‖ν‖ ≤ ε for some ε > 0. Let 1 > δ > 0. Assume

m ≥
w(Ω)2 + 3

2

(1− δ)2
. (68)
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Let x̂ solve Problem 3. Then ‖x∗ − x̂‖ ≤ 2ε
δ with probability exceeding

1− exp
(
−C

(
λm − w(Ω)−

√
mδ
)2)

(69)

where C > 0 is as in Proposition 4.

Proof. Our strategy will be to show that the hypotheses of Proposition 1 hold with high proba-
bility.

We �rst note that in the ε = 0 case, the assumption (66) implies λm > w(Ω). This follows
since

λm (70)

≥ m√
m+ 1

From Proposition C.10 (71)

=

√
m√

1 + 1
m

(72)

≥
√
w(Ω)2 + 1

1 + 1
m

By (66) (73)

>

√
w(Ω)2 + w(Ω)2

m

1 + 1
m

Since by (66) m > w(Ω)2 (74)

= w(Ω). (75)

Analogously in the ε > 0 case the assumption (68) implies λm −
√
mδ > w(Ω). This follows
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since

λm −
√
mδ (76)

≥ m√
m+ 1

−
√
mδ From Proposition C.10 (77)

=
m−

√
m
√
m+ 1δ√

m+ 1
(78)

≥ m− (m+ 1)δ√
m+ 1

(79)

=
(1− δ)m− δ√

m+ 1
(80)

=
(1− δ)

√
m− δ√

m√
1 + 1

m

(81)

=

√
(1− δ)2m− 2(1− δ)δ + δ2

m

1 + 1
m

(82)

≥

√
(1− δ)2m− 1

2

1 + 1
m

dropping
δ2

m
and using δ(1− δ) ≤ 1

4
because 0 < δ < 1 (83)

≥

√
w(Ω)2 + 1

1 + 1
m

by (68) (84)

>

√√√√w(Ω)2 + w(Ω)2

m

1 + 1
m

since m > w(Ω)2 (85)

= w(Ω). (86)

De�ning v by v(Ψ) = minz∈Ω‖Ψz‖, we know by Proposition 6 that v is 1-Lipshitz. Further-
more, the transformation

√
mΦ is standard Gaussian. Thus by the concentration of measure

result Proposition 4, we have for t ≥ 0

P (v(
√
mΦ) ≥ IE v(

√
mΦ)− t) ≥ 1− exp(−Ct2). (87)

Applying Gordon's Theorem and dividing out
√
m, we have

P (v(Φ) ≥ λm − w(Ω)− t√
m

) ≥ 1− exp(−Ct2). (88)

Setting τ = λm−w(Ω)−t√
m

we have the following inequality

P (v(Φ) ≥ τ) ≥ 1− exp(−C(λm − w(Ω)−
√
mτ)2), (89)

which holds when 0 ≤ t = λm − w(Ω)−
√
mτ .

In the ε = 0 case, we have by (75) that λm − w(Ω) > 0. We therefore know that (89) holds
for τ less than some τ > 0. Thus applying the continuity from below property of measures (see

12



page 7 of Grimmett and Stirzaker[9]), we have

P (v(Φ) > 0) = P (
⋃

τ∈(0,τ ]

{v(Φ) ≥ τ}) = lim
τ→0

P (v(Φ) ≥ τ) ≥ 1− exp(−C(λm − w(Ω))2). (90)

By Proposition 1 this is gives us the desired result.
In the ε > 0 case, we have by (86) that λm−

√
mδ > w(Ω). Substituting τ = δ into (89) gives

us the desired result by Proposition 1.7

7 Gaussian Widths for Speci�c problems

We are almost ready to execute the plan set out in Remark 1. With Proposition 7, we can relate
the probability a given x∗ solves Problem 2 or Problem 3 to a Gaussian width. The next step is
to bound this Gaussian width for examples of interest. Each example must be treated separately.

7.1 l1 Minimization

Proposition 8 (Proposition 3.10 in Chandrasekaran et al.[3]). Let x∗ ∈ Rn be an k-sparse vector
and let γ = ‖·‖1. Let T(x∗) be as in Section 2. Let S2 denote the unit sphere in Rn. Then

(w(T(x∗) ∩ S2))2 ≤ 2k log(
n

k
) +

(
1 +

1√
π

)
k. (91)

Proof. We shall bound w(T(x∗) ∩ S) using Proposition 3.
First, let sppx∗ denote the support of x∗, that is the indexes of its nonzero components. Then

by Propositions A.13 and A.19 we have

N(x∗) = {s ∈ Rn : si = t sign(x∗i )∀i ∈ spp(x∗), si ∈ [−t, t] ∀i ∈ (sppx∗)c}. (92)

For �xed z ∈ X, we therefore have

(w(T(x∗) ∩ S2))2 (93)

≤ inf
u∈N(x∗)

‖u− z‖2 (94)

= inf
t>0

 ∑
i∈sppx∗

(zi − t signx∗i )
2 +

∑
i∈(sppx∗)c

inf
ui∈[−t,t]

(zi − ui)2

 (95)

= inf
t>0

 ∑
i∈sppx∗

(zi − t signx∗i )
2 +

∑
i∈(sppx∗)c

shrink(zi, t)
2

 (96)

(97)

where

shrink(z, t) := (z + t)1R−(z + t) + (z − t)1R+(z − t), (98)

7Note that, like in Section 2, the speci�c structure of γ as a gauge function was not used here.
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and for any set C, 1C is the characteristic function of C. Picking a t > 0, substituting the random
vector g for z, and taking expectations yields

IE inf
u∈Nγ(x∗)

‖u− g‖2 (99)

≤ IE
∑

i∈sppx∗

(gi − t signx∗i )
2 + IE

∑
i∈(sppx∗)c

shrink(gi, t)
2 (100)

= IE
∑

i∈sppx∗

(g2
i + t2 − 2git signxi) + IE

∑
i∈(sppx∗)c

shrink(gi, t)
2 (101)

= k(1 + t2)︸ ︷︷ ︸
Since gi is N(0, 1)

and sppx∗ has k elements

+
∑

i∈(sppx∗)c

IE shrink(gi, t)
2 (102)

To proceed, we must bound the second term. We make use of the symmetry of the shrink(·, t)
function.

E shrink(gi, t)
2 (103)

=
1√
2π

∫ ∞
−∞

shrink(q, t)2 exp(
−q2

2
) dq (104)

=
2√
2π

∫ ∞
t

(q − t)2 exp(
−q2

2
) dq by symmetry

(105)

=
2√
2π

∫ ∞
t

q2 exp(
−q2

2
) dq︸ ︷︷ ︸

call this A

− 4t√
2π

∫ ∞
t

q exp(
−q2

2
) dq︸ ︷︷ ︸

call this B

+
2t2√
2π

∫ ∞
t

exp(
−q2

2
) dq (106)

Working on via integration by parts on term A,

A =
2√
2π

∫ ∞
t

(−q)(−q exp(
−q2

2
)) dq (107)

=
2√
2π

∫ ∞
t

(−q)( d
dq

exp(
−q2

2
)) dq (108)

=
2√
2π

(
−q exp(−q

2

2
)
∣∣∣∞
t

+

∫ ∞
t

exp(
−q2

2
) dq

)
(109)

=
2t√
2π

exp(
−t2

2
) +

2√
2π

∫ ∞
t

exp(
−q2

2
) dq. (110)

In the case of term B, we have

B =
4t√
2π

∫ ∞
t

d

dq
(− exp(− t

2

2
)) dq (111)

=
4t√
2π

exp(
−t2

2
). (112)
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Combining the above yields∫ ∞
−∞

shrink(q, t)2 dq (113)

=
2(1 + t2)√

2π

∫ ∞
t

exp(
−q2

2
) dq − 2t√

2π
exp(

−t2

2
) (114)

≤ 2(1 + t2)√
2π

1

t
exp(

−t2

2
)− 2t√

2π
exp(

−t2

2
) by Proposition C.8 (115)

=
2√
2π

1

t
exp(

−t2

2
). (116)

Using this bound in (102) yields

IE inf
u∈N(x∗)

‖u− g‖2 (117)

≤ k(1 + t2) + (n− k)
2√
2π

1

t
exp(

−t2

2
). (118)

for any t > 0. Substitute t =
√

2 log
(
n
k

)
to get

k(1 + 2 log
(n
k

)
) + (n− k)

2√
2π

1√
2 log

(
n
k

) kn (119)

= k(1 + 2 log
(n
k

)
) +

k
(
1− k

n

)√
π log

(
n
k

) . (120)

By Taylor series expansion with remainder, for x > 1 we have

log x > 0 +
1

x
(x− 1) = 1− 1

x
. (121)

Thus
1− 1

x√
log x
≤
√

1− 1
x ≤ 1. Thus the bound in (120) becomes8

(w(T(x∗) ∩ S2))2 ≤ 2k log
(n
k

)
+ (1 +

1√
π

)k (122)

With this result, we have carried out the plan set out in Remark 1 for the case of sparse
vector recovery. Using Proposition 8, we can bound the Gaussian width of a tangent cone T(x∗),
and using Proposition 7, we can use this width to determine when we can recover x∗ with high
probability. In the ε = 0 case, for example, we have.

8Actually
1− 1

x√
log x

< 0.65, so a somewhat better bound can be achieved with more work.
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Proposition 9. Let x∗ ∈ Rn be k-sparse. Let Φ be a random m× n matrix whose entries have
zero mean and variance 1

m . Let b = Φx∗. Assume

m ≥ 4

(
2k log

(n
k

)
+ (1 +

1√
π

)k + 1

)
. (123)

Then x∗ is the unique solution to

minimize ‖x‖1 subject to Φx = b (124)

with probability exceeding

1− exp

(
−C 1

4

m2

m+ 1

)
(125)

where C is as in Proposition 4.

Proof. Proposition 8 and (123) show

4((w(T(x∗) ∩ S2))2 + 1) ≤ m. (126)

Repeating the steps performed in (70)-(75), we get

λm ≥
√

4(w(Ω) + 1)

1 + 1
m

> 2w(Ω). (127)

The hypothesis of the �rst part of Proposition 7 are satis�ed. So solving (170) will �nd x∗ with
probability exceeding

1− exp
(
−C (λm − w(Ω))2

)
(128)

≥ 1− exp

(
−C(

1

2
λm)2

)
by (127) (129)

≥ 1− exp

(
−C 1

4

m2

m+ 1

)
by Proposition C.10 (130)

Similarly, In the ε > 0 case, we have

Proposition 10. Let x∗ ∈ Rn be k-sparse. Let Φ be a random m× n matrix whose entries have
zero mean and variance 1

m . Let b = Φx∗ + ν where ‖ν‖ ≤ ε. Assume

m ≥ 16

(
2k log

(n
k

)
+ (1 +

1√
π

)k + 1

)
+ 2. (131)

Let x̂ be any solution of

minimize ‖x‖1 subject to ‖Φx− b‖ ≤ ε. (132)

Then ‖x∗ − x̂‖ ≤ 4ε with probability exceeding

1− exp

(
− C

16

(m− 1)2

m+ 1

)
(133)
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Proof. Set δ = 1
2 . Proposition 8 and (131) show

(1− δ)2m− 1

2
≥ 4(w(Ω) + 1). (134)

Repeating the steps performed in (76)-(86) we get

λm −
√
mδ ≥ 2w(Ω). (135)

The hypothesis of the second part of Proposition 7 are satis�ed. So (173) will �nd a solution x̂
such that ‖x̂− x∗‖ ≤ 2ε

δ = 4ε with probability exceeding

1− exp
(
−C

(
λm − w(Ω)−

√
mδ
)2)

(136)

≥ 1− exp

(
−C

(
1

2
(λm −

√
mδ)

)2
)

Using (135) (137)

≥ 1− exp

(
−C

4

(
m√
m+ 1

−
√
mδ

)2
)

using Proposition C.10 (138)

≥ 1− exp

(
−C

4

(
(1− δ)m− δ√

m+ 1

)2
)

(139)

= 1− exp

(
− C

16

(m− 1)2

m+ 1

)
Using δ =

1

2
(140)

as desired.

7.2 Nuclear Norm Minimization

Having bounded the Gaussian width for l1 minimization, we move to our second main example
and bound the Gaussian width for nuclear norm minimization.

Proposition 11 (Proposition 3.11 in Chandrasekaran et al.[3]). Let x∗ ∈ Rn1×n2 be a rank r
matrix and let γ = ‖·‖∗. Let T(x∗) be as in Section 2. Let S2 denote the unit sphere in Rn1×n2 .
Then

(w(T(x∗) ∩ S2))2 ≤ 3r(n1 + n2 − r) + 2r
√
π
√
n1 + n2 − 2r (141)

Proof. Let x∗ have singular value decomposition

x∗ = UDV T . (142)

Where U ∈ Rn1×r, D ∈ Rr×r, and V ∈ Rn2×r.
By Proposition B.1 and A.19 we have

N‖x∗‖∗ = {tUV T +W, W ∈ Rn1×n2 , ‖W‖ ≤ t, WV = 0, UTW = 0, t ≥ 0}. (143)
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Let u1, . . . , ur denote the columns of U and let v1, . . . , vr denote the columns of V . We de�ne the
subspace

∆ = span{uivTj , 1 ≤ i ≤ r, 1 ≤ j ≤ r} ⊕ span{avTj , 1 ≤ j ≤ r, a ∈ {u1, . . . , ur}⊥} (144)

⊕ span{uibT , 1 ≤ i ≤ r, b ∈ {v1, . . . , vr}⊥} (145)

Since ∆ is the direct sum of three subspaces that are mutually perpendicular in the Frobenius
inner-product, its dimension is the sum of their dimensions:

dim ∆ = r2 + (n1 − r)r + r(n2 − r) (146)

= r(n1 + n2 − r). (147)

Let g be a Gaussian matrix in Rn1×n2 . We will upper bound the distance from g to the normal
cone N‖x∗‖∗ by computing the distance from g to

Z(g) :=
(
‖Π∆⊥(g)‖UV T + Π∆⊥(g)

)
∈ N‖x∗‖∗ (148)

where for any closed convex set C, we let ΠC be the projection operator onto C. Let ‖·‖F denote
the Frobenius norm. We have

IE‖g − Z(g)‖2F (149)

= IE‖Π∆(g) + Π∆⊥(g)− ‖Π∆⊥(g)‖UV T −Π∆⊥(g)‖2F (150)

= IE‖Π∆(g)− ‖Π∆⊥(g)‖UV T ‖2F (151)

= IE‖Π∆(g)‖2F − 2‖Π∆⊥(g)‖〈Π∆(g), UV T 〉+ ‖Π∆⊥(g)‖2‖UV T ‖2F (152)

= IE‖Π∆(g)‖2F + ‖Π∆⊥(g)‖2‖UV T ‖2F Since Π∆(g) and Π∆⊥(g) are independent
(153)

By Proposition C.10, we know that

IE‖Π∆(g)‖2F = dim ∆ = r(n1 + n2 − r). (154)

Also, because the singular values of UV T consist of r copies of 1, we have

‖UV T ‖2F = r. (155)

It remains to bound IE‖Π∆⊥(g)‖. Applying Proposition C.11 (Theorem II.13 in Davidson and
Szarek[5]) we have that for s ≥ 0

P (‖Π∆⊥(g)‖ ≥
√
n1 − r +

√
n2 − r + s) ≤ exp(−s

2

2
). (156)
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De�ne µ :=
√
n1 − r +

√
n2 − r. Now compute

IE‖Π∆⊥(g)‖2 (157)

=

∫ ∞
0

P (‖Π∆⊥(g)‖2 > h) dh (158)

≤ µ2 +

∫ ∞
µ2

P (‖Π∆⊥(g)‖2 > h) dh (159)

= µ2 +

∫ ∞
0

2(t+ µ)P (‖Π∆⊥(g)‖2 > (t+ µ)2) dt letting h = (t+ µ)2 (160)

= µ2 +

∫ ∞
0

2(t+ µ)P (‖Π∆⊥(g)‖ > (t+ µ)) dt (161)

≤ µ2 +

∫ ∞
0

2(t+ µ) exp(
−t2

2
) dt By (156) (162)

= µ2 + 2 + 2µ

√
π

2
. (163)

Combining (153), (154), (155), and (163) we get

IE d(g,N‖x∗‖∗) (164)

≤ r(n1 + n2 − r) + r(
√
n1 − r +

√
n2 − r)2 + 2r + 2r(

√
n1 − r +

√
n2 − r)

√
π

2
(165)

≤ r(n1 + n2 − r) + 2r(n1 + n2 − 2r) + 2r + 2r
√

2(n1 + n2 − 2r)

√
π

2
(166)

≤ 3r(n1 + n2 − r) + 2r
√
π
√
n1 + n2 − 2r (167)

(168)

where we have used that for real a, b we have (a+ b)2 ≤ 2a2 +2b2 which follows from (a− b)2 ≥ 0.
An application of Proposition 3 gives the desired result9.

We have the following analogue to Proposition 9

Proposition 12. Let x∗ ∈ Rn1×n2 be a rank r matrix. Let Φ be a random linear transformation
from Rn1×n2 to Rm, which when represented as a matrix has entries with zero mean and variance
1
m . Let b = Φx∗. Assume

m ≥ 4
(
3r(n1 + n2 − r) + 2r

√
π
√
n1 + n2 − 2r + 1

)
. (169)

Then x∗ is the unique solution to

minimize ‖x‖∗ subject to Φ(x) = b (170)

9There seems to be an error in the proof of Proposition 3.11 in Chandrasekaran et al.[3]: equation 85 in that
paper does not appear to follow from equation 84. I modi�ed their proof to correct this apparent mistake, and so
got a slightly worse bound on the Gaussian width.
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with probability exceeding

1− exp

(
−C 1

4

m2

m+ 1

)
(171)

where C is as in Proposition 4.

Proof. Essentially identical to that of Proposition 9.

Similarly, In the ε > 0 case, we have

Proposition 13. Let x∗ ∈ Rn1×n2 be a rank r matrix. Let Φ be a random linear transformation
from Rn1×n2 to Rm, which when represented as a matrix has entries with zero mean and variance
1
m . Let b = Φx∗ + ν where ‖ν‖ ≤ ε. Assume

m ≥ 16
(
3r(n1 + n2 − r) + 2r

√
π
√
n1 + n2 − 2r + 1

)
+ 2. (172)

Let x̂ be any solution of

minimize ‖x‖∗ subject to ‖Φ(x)− b‖ ≤ ε. (173)

Then ‖x∗ − x̂‖ ≤ 4ε with probability exceeding

1− exp

(
− C

16

(m− 1)2

m+ 1

)
(174)

where C is as in Proposition 4.

Proof. Basically identical to Proposition 10.

8 Conclusion

Frequently, convexity serves as a nexus, fusing discrete or discontinuous problems with continuous
ones. This role is apparent in some of the simplest convex objects. For example, a polyhedron
has both a discrete vertex/edge/face structure a continuous interior structure. We have seen
numerous other instances in CS798, including the solution of minimum cut problems by gradient
descent, the use of a randomized projection algorithm to �nd a partly integral point in a large
convex body, and the proof of an approximate caratheodory theorem via mirror descent.

The class of problems we presented in this essay provide yet another example. One solves
these problems by replacing a highly nonsmooth set with a much larger, much smoother set,
and then minimizing a nonsmooth function over the smoothed set. The structure of the original
nonsmooth set is partly preserved in the nonsmooth function. Moreover, the nonsmooth function
is tractable to minimize because it is convex.

The strategy of transferring nonsmoothness from a set to a function in such a way that the
function remains tractable has been a fruitful one. I predict that cunning mathematicians will
continue to �nd new ways to use it the future.
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9 Extensions

9.1 Random Convex Programs

Amelunxen et al.[1] observe that the question considered in this essay� whether a given distin-
guished point is likely to be the a solution to a linear inverse problem with random data� is a
special case of the problem of determining the probability that a randomly rotated convex cone
intersects a �xed convex cone. Employing results from the theory of spherical integral geometry
(covered in chapter 6.5 of Schneider and Weil[16]), they characterize this probability in terms of
a quantity called the statistical dimension of a cone. The statistical dimension is related to but
distinct from the Gaussian width we used in this essay. In addition to allowing them to treat
a broader class of problems, Amelunxen et al.'s approach also enables them to produce more
detailed results. For example, in the case of sparse signal recovery, they characterize not only the
region in which l1 minimization is likely to succeed, but also the region in which it is likely to
fail, and the transition between the two regions.

9.2 Total Variation

If an image or signal is modeled as a real function of one or more real variables, its total variation
is the L1 norm of the pointwise l2 norm of its gradient. For practical images, which are of course
discrete, a discretized total variation is used. The great utility of the total variation regularizer
in signal and image processing lends considerable importance to the task of understanding its
theoretical properties. Cai and Xu[2] undertake this task, using strategies mirroring those of
Chandrasekaran et al.[3] to relate the sparsity of an signal's gradient to the odds it can be
recovered by total variation minimization.

A Appendix: Results from Convex Analysis

Here are some useful results from Convex Analysis. This material is mostly drawn from Hiriart-
Urruty and Lemaréchal ([12], [13]). In what follows, let X be a Euclidean space.

A.1 Convex Functions

Proposition A.1 (The Criterion of Increasing Slopes). A function f : X → R is convex if and
only if for all t2 > t1 > 0 and for all vectors x, d ∈ X

f(x+ t2d)− f(x)

t2
≥ f(x+ t1d)− f(x)

t1
, (175)

which holds if an only if

f(x+ t2d)− f(x+ t1d)

t2 − t1
≥ f(x+ t1d)− f(x)

t1
. (176)

Proof. (175) is equivalent to

t1(f(x+ t2d)− f(x)) ≥ t2(f(x+ t1d)− f(x1)) (177)

t1
t2
f(x+ t2d) + (1− t1

t2
)f(x) ≥ f(x+ t1d) (178)

21



but this is equivalent to the de�nition of convexity. To get (176), de�ne x1 := 0, y1 := t1, z1 := t2,
x2 := f(x), y2 := f(x+ t1d), and z2 := f(x+ t2d). Then

z2 − y2

z1 − y1
− y2 − x2

y1 − x1
(179)

=
(y1 − x1)(z2 − y2)− (z1 − y1)(y2 − x2)

(z1 − y1)(y1 − x1)
(180)

=
y1(z2 − y2 + y2 − x2)− x1(z2 − y2)− z1(y2 − x2)

(z1 − y1)(y1 − x1)
(181)

=
y1(z2 − x2)− x1(z2 − y2)− z1(y2 − x2)

(z1 − y1)(y1 − x1)
(182)

=
y1(z2 − x2)− x1(z2 − x2)− x1(x2 − y2)− z1(y2 − x2)

(z1 − y1)(y1 − x1)
(183)

=
(y1 − x1)(z2 − x2)− (z1 − x1)(y2 − x2)

(z1 − y1)(y1 − x1)
(184)

=

z2−x2
z1−x1 −

y2−x2
y1−x1

z1−y1
z1−x1

. (185)

The positivity of (179) is equivalent to (176), while the positivity of (185) is equivalent to (175)
(since t2 > t1 > 0). But we have shown the two quantities in question are equal, so we are
done.

Proposition A.2 (Theorem B.3.1.2 in Hiriart-Urruty and Lemaréchal [13]). Let f : X → R be
convex. Let S ⊂ X be convex and compact. Then there exists a positive real number L(S) such
that on S, f is L(S)-lipshitz

Proof. See Hiriart-Urruty and Lemaréchal[13].

Proposition A.3 (Proposition IV.2.5.1/IV.2.5.2/IV.2.5.4 in Hiriart-Urruty and Lemaréchal [12]).
Let g : X → R and suppose there exists an a�ne function b : X → R such that g ≥ b. Then
the following functions (called the closed convex hull of g and denoted cl conv g) are convex and
equal:

f1(x) = inf{r : (x, r) ∈ cl conv epi g} (186)

f2(x) = sup{a(x) : a a�ne and a(x) ≤ g(x)∀x ∈ X}. (187)

Furthermore, if g = min{g1, . . . , gm}, where the gi are �nite convex functions then

cl conv g(x) = inf{
m∑
j=1

αjgj(xj) : αi ≥ 0 ∀i,
m∑
i=1

αi = 1,

m∑
i=1

αjxj = x} (188)

Proof. See Proposition IV.2.5.1/IV.2.5.2/IV.2.5.4 in Hiriart-Urruty and Lemaréchal[12].
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A.2 Convex Cones

Given a convex set C ⊂ X and a point x ∈ C, de�ne the normal cone

NC(x) = {s ∈ X : 〈y − x, s〉 ≤ 0 ∀y ∈ C}. (189)

and the tangent cone

TC(x) = clR+ (C − x) . (190)

Proposition A.4.

NC(x) = (TC(x))◦ (191)

Proof. First, let s ∈ (TC(x))◦. Since C − x ⊂ TC(x) we have for all y ∈ C

〈y − x, s〉 ≤ 0 (192)

so that s ∈ NC(x). Conversely suppose s ∈ NC(x). Then by de�nition

〈y − x, s〉 ≤ 0∀y ∈ C (193)

〈α(y − x), s〉 ≤ 0∀y ∈ C ∀α ≥ 0. (194)

Taking limits and using the continuity of the inner product, we have

〈z, s〉 ≤ 0 ∀z ∈ TC(x) (195)

as desired.

Proposition A.5 (Moreau Decomposition. III.3.2.5 in Hiriart-Urruty and Lemaréchal[12]). Let
K ⊂ X be a closed convex cone. Let x ∈ X. Then the following are equivalent.

• y is the projection of x onto K and z is the projection of x onto K◦.

• x = y + z, y ∈ K, z ∈ K◦, and 〈y, z〉 = 0.

Proof. Assume the �rst statement holds. Then by the characterization of the projection onto a
convex set, we have for all w ∈ K

〈x− y, w − y〉 ≤ 0. (196)

Since αy ∈ K for α ≥ 0 we have

(α− 1)〈x− y, y〉 ≤ 0. (197)

Since this must hold for all α > 0, we must have

〈x− y, y〉 = 0. (198)

Now use this to compute for u ∈ K◦

〈x− (x− y), u− (x− y)〉 = 〈y, u− (x− y)〉 = 〈y, u〉 ≤ 0 (199)
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so that x− y is the projection of x onto K◦ and thus x− y = z. Combined with (198) this gives
the second statement.

Now assume the second statement holds. Then for w ∈ K

〈x− y, w − y〉 = 〈z, w − y〉 = 〈z, w〉 − 〈z, y〉 = 〈z, w〉 ≤ 0 (200)

so that y is the projection of x onto K. Symmetrically z is the projection of x onto K◦.

Proposition A.6 (Proposition A.1.4.7 in Hiriart-Urruty and Lemaréchal [13]). Let S be a
nonempty compact set whose convex hull does not contain the origin. Then the conical hull
of S (i.e. coneS) is closed.

Proof. See Proposition A.1.4.7 in Hiriart-Urruty and Lemaréchal [13].

A.3 Sublinear Functions

De�nition A.1. A function σ : X → R is said to be �nite sublinear if it is convex and satis�es
for all x ∈ X and t > 0

σ(tx) = tσ(x). (201)

The condition (201) is called positive homogeneity.

De�nition A.2. Given a convex compact set C ⊂ Rn de�ne its support function to be σC(x) :=
sup{〈x, s〉 : s ∈ C}.

Proposition A.7. The support function σC of a convex compact set C is �nite sublinear.

Proof. Convexity follows since σ is the supremum of linear functions. The compactness of C makes
σC �nite. Positive homogeneity is a consequence of the interaction of the supremum operator
with multiplication by a positive constant.

Proposition A.8 (Theorem B.3.1.1 in Hiriart-Urruty and Lemaréchal [13]). The σ be a �nite
sublinear function. Then σ is the support function of the set

S = {s ∈ X : 〈x, s〉 ≤ σ(x) ∀x ∈ X}. (202)

Proof. See Theorem B.3.1.1 in [13].

Proposition A.9 (Theorem V.3.3.3 in Hiriart-Urruty and Lemaréchal [13]). Let J be a �nite
index set. Let {σj}j∈J be the support functions of the compact convex sets {Sj}j∈J . Let S =⋂
j∈J Sj 6= ∅. Let σS be the support function of S. Then

σS = cl conv inf
j∈J

σj (203)

Proof.

• s ∈ S is equivalent to s ∈ sj ∀j ∈ J .

• By Proposition A.8, this is equivalent to 〈·, s〉 ≤ σj ∀j ∈ J .
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• This is equivalent to 〈·, s〉 ≤ infj∈J σj .

• This is equivalent to 〈·, s〉 ≤ cl conv infj∈J σj by Proposition A.3.

• Using Proposition A.8, this last statement implies that the �nite sublinear function cl conv infj∈J σj
is the support function of S (Proposition A.3 implies that cl conv infj∈J σj is �nite convex.
Positive homogeneity follows from the representation (188). So it is �nite sublinear.).

A.4 Subgradients

De�nition A.3. If f : X → R is convex, de�ne its subgradient at x X

∂f(x) = {s ∈ X : f(y) ≥ f(x) + 〈y − x, s〉 ∀y ∈ X}. (204)

Proposition A.10 (pg 168 in Hiriart-Urruty and Lemaréchal [13]). If f : X → R is convex then
∂f(x) is convex and compact for all x ∈ X.

Proof. The closeness and convexity of ∂f(x) follows from the continuity and convexity of the
inner product, and the preservation of convexity and closedness under intersection of sets. To see
the boundness of ∂f(x), let L be the Lipshitz constant provided by Proposition A.2 for the set
B2(x, 2), the Euclidean ball of radius 2 centered on x. For nonzero s ∈ ∂f(x) let y = x + s

‖s‖ .
Then

f(x) + L ≥ f(y) ≥ f(x) + 〈y − x, s〉 = f(x) + ‖s‖ (205)

so that

L ≥ ‖s‖. (206)

De�nition A.4. If f : X → R is convex and x, d ∈ X de�ne its directional derivative at x in
direction D by

f ′(x, d) = inf
t>0

f(x+ td)− f(x)

t
. (207)

Note that by Proposition A.1, f(x+td)−f(x)
t is decreases monotonically as t ↓ 0. Thus

f ′(x, d) = lim
t↓0

f(x+ td)− f(x)

t
. (208)

Proposition A.11 (Proposition D.1.1.2 in Hiriart-Urruty and Lemaréchal [13]). Let f : X → R
be convex. For �xed x ∈ X the function f ′(x, ·) is �nite sublinear.
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Proof. First we show convexity. Pick d1, d2 ∈ X and α1, α2 ≥ 0 such that α1 +α2 = 1. Let t > 0.
We have

f(x+ t(α1d1 + α2t2))− f(x) = f(α1(x+ td1) + α2(x+ td2))− f(x) (209)

≤ α1(f(x+ td1)− f(x)) + α2(f(x+ td2)− f(x)) by convexity of f
(210)

Divide both sides by t and let t ↓ 0 to show convexity.
To show positive homogeneity let s > 0

f ′(x, sd) = lim
t↓0

f(x+ tsd)− f(x)

t
= s lim

u↓0

f(x+ ud)− f(x)

u
= sf ′(x, d) (211)

where we use a change of variables. To show �niteness, note that by Proposition A.2 for small
enough t we have that |f(x+ td)− f(x)| ≤ Lt‖d‖.

Proposition A.12. Let f : X → R be convex and let x ∈ X. The function f ′(x, ·) is the support
function of the set ∂f(x).

Proof. To say that s ∈ ∂f(x) is to say that for all t > 0 all d ∈ X we have

f(x+ td) ≥ f(x) + t〈d, s〉 (212)

f(x+ td)− f(x)

t
≥ 〈d, s〉 (213)

Since Proposition A.1 tells us that t 7→ f(x+td)−f(x)
t is monotonic, (213) holding for all t > 0 is

equivalent to

lim
↓0

f(x+ td)− f(x)

t
≥ 〈d, s〉 (214)

f ′(x, d) ≥ 〈d, s〉. (215)

By Proposition A.8, this is what we want.

Proposition A.13 (pg 180 of Hiriart-Urruty and Lemaréchal [13]. Proof is mine.). If C ⊂ X is
a convex compact set, and σC is its support function then for all x ∈ Rn

∂σC(x) = {s ∈ C : 〈x, s〉 ≥ 〈x, z〉 ∀z ∈ C} =: FC(x) (216)

Proof. We aim to show the statement s ∈ FC(x) is equivalent to the statement that for all y

sup
z1∈C
〈y, z1〉 ≥ sup

z2∈C
〈x, z2〉+ 〈y − x, s〉. (217)

First let s ∈ ∂f(x). To generate a contradiction assume s /∈ FC(x). Then there exists a z ∈ C
such that 〈x, z〉 > 〈x, s〉. But then for all y

sup
z1∈C
〈y, z1〉 ≥ sup

z2∈C
〈x, z2〉+ 〈y − x, s〉 ≥ 〈x, z〉+ 〈y − x, s〉 > 〈y, s〉. (218)
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Take y = 0 to get a contradiction. Conversely let s ∈ FC(x) Then 〈x, z〉 ≤ 〈x, s〉 for all z ∈ C. So

sup
z2∈C
〈x, z2〉+ 〈y − x, s〉 ≤ 〈y, s〉 ≤ sup

z1∈C
〈y, z1〉. (219)

as desired.

Proposition A.14.

Proposition A.15 ([12] Theorem VI.4.4.2). Let J be a compact subset of a metric space. Let
{fj : j ∈ J} be a family of convex functions on Rn. Let f = supj∈J fj and assume f is �nite
everywhere. Assume that the maps j → fj(x) are upper semicontinuous for each x ∈ Rn. Let
J(x) := {j ∈ J : fj(x) = f(x)} Then for all x

∂f(x) = conv
⋃

j∈J(x)

∂fj(x). (220)

A.5 Descent

For any convex function f, and point x denote by Sf(x) = {y ∈ Rn : f(y) ≤ f(x)}, the sublevel
set of f at x.

Proposition A.16 (VI.1.3.2 in Hiriart-Urrutty and Lemaréchal[12]). For any convex function
f : X → R we have that

TSf(x)(x) ⊂ {d : f ′(x, d) ≤ 0} (221)

Proof. We have

TSf(x)(x) = cl{αd : f(x+ d)− f(x) ≤ 0, α ≥ 0}. (222)

By Proposition A.1, we know that the slope of a convex function is monotone, so f(x+d)−f(x) ≤ 0
implies f ′(x, d) ≤ 0. Thus

TSf(x)(x) ⊂ cl{αd : f ′(x, d) ≤ 0, α ≥ 0} (223)

= cl{d : f ′(x, d) ≤ 0} f ′(x, ·) is positively homogeneous (224)

= {d : f ′(x, d) ≤ 0} (225)

where the last line follows because, as a �nite convex function, f ′(x, ·) is continuous by proposition
A.2, so has closed sublevel sets.

Proposition A.17 (IV.1.3.4 in Hiriart-Urrutty and Lemaréchal[12]). Let f : X → R be convex.
Suppose there exists x0 ∈ X such that

f(x0) < 0. (226)

Then

cl{x ∈ X : f(x) < 0} = {x ∈ X : f(x) ≤ 0} (227)
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Proof. By Proposition A.2 we know f is continuous, so {x ∈ X : f(x) ≤ 0} is closed and hence

cl{x ∈ X : f(x) < 0} ⊂ {x ∈ X : f(x) ≤ 0}. (228)

To show the other inclusion let y ∈ {x ∈ X : f(x) ≤ 0}. Let xα := (1− α)x0 + αy. By convexity
we have for 0 < α < 1 that

f(xα) ≤ (1− α)f(x0) + αf(y) (229)

< 0 (226) and def of y (230)

Since xα → y as α→ 1 we have y ∈ cl{x ∈ X : f(x) < 0} as desired.

Proposition A.18 (Theorem VI.1.3.4 in Hiriart-Urrutty and Lemaréchal[12]). Let f : X → R
be convex. Assume x is such that 0 /∈ ∂f(x). Then

TSf(x)(x) = {d ∈ X : f ′(x, d) ≤ 0}. (231)

Proof. By Propositions A.5 we already have the ⊂ inclusion. To prove the other inclusion, note
that if d ∈ X satis�es the strict inequality f ′(x, d) < 0 then by De�nition A.4 there is a t > 0
such that f(x+ td)− f(x) < 0. We have d = x+td−x

t so that d ∈ TSf(x)(x). So we have shown

TSf(x)(x) ⊃ {d : f ′(x, d) < 0}. (232)

By the assumption 0 /∈ ∂f(x) we know that x does not minimize f and thus by A.4, the set
{d : f ′(x, d) < 0} is nonemtpy. This nonemptiess allows us to apply Proposition A.17 to the
convex function f ′(x, ·) to get

TSf(x)(x) ⊃ {d : f ′(x, d) ≤ 0} (233)

as desired.

Proposition A.19 (Theorem VI.1.3.5 in Hiriart-Urruty and Lemaréchal[12].). Let f : X → R
be convex, and let x ∈ Rn be such that 0 /∈ ∂f(x). Then

NSf(x)(x) = R+∂f(x). (234)

Proof. We have:

TSf(x)(x) = {d : f ′(x, d) ≤ 0} by A.18 (235)

= {d : 〈s, d〉 ≤ 0∀s ∈ ∂f(x)} by A.12 (236)

= {d : 〈ts, d〉 ≤ 0 ∀s ∈ ∂f(x), ∀t ≥ 0} (237)

= (R+∂f(x))◦. (238)

Take polars of both sides to get

NSf(x)(c) = clR+∂f(x). (239)

We know that 0 /∈ ∂f(x), so that by Proposition A.6

cl(R+∂f(x)) = R+∂f(x) (240)

and we are done.
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B The Nuclear Norm

Let A ∈ Rm×n. The nuclear norm of A, denoted ‖A‖∗, is the sum of its singular values. The
pertinent facts about the nuclear norm are

1. The nuclear norm is a norm on Rm×n .

2.

Proposition B.1. Let A ∈ Rm×n. Let A have singular value decomposition A = FDGT

where F ∈ Rm×r D ∈ Rr×r and G ∈ Rn×r. Then

∂‖A‖∗ =

{
B‖·‖ if A = 0

{C ∈ Rm×n : C = FGT +W,F TW = WG = 0, ‖W‖ ≤ 1} else
(241)

Because this essay is already too long, I will not go into details. However, I believe the key
attributes of the nuclear norm are consequences of this proposition.

Proposition B.2. Let A,B ∈ Rm×n then

|〈A,B〉| ≤ ‖A‖‖B‖∗ (242)

where we are using the Frobenius inner product.

Proof. Let B have singular value decomposition B =
∑r

i=1 σifig
T
i .

|〈A,B〉| = | tr(ATB)| (243)

= |
r∑
i=1

σi tr(AT fig
T
i )| (244)

= |
r∑
i=1

σig
T
i A

T fi| Property of Trace (245)

≤
r∑
i=1

σi|gTi AT fi| (246)

≤
r∑
i=1

σi‖AT fi‖ Cauchy-Schwarz (247)

≤
r∑
i=1

σi‖A‖ de�nition of operator norm (248)

= ‖A‖‖B‖∗ de�nition of nuclear norm (249)
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C Probability

C.1 General Facts

Proposition C.1 (Markov's inequality). Let Λ be a nonnegative random variable. Let a > 0.
Then

P (Λ ≥ a) ≤ IE Λ

a
(250)

Proof. We have

Λ = Λ1Λ≥a + Λ1Λ<a ≥ a1Λ≥a. (251)

Take the expectation of both sides to get the result.

Proposition C.2 (Jensen's Inequality for Integrals. From Exercise 3.42 in Folland[7]). Let µ be
a probability measure on on R such that

∫
x dµ(x) is �nite. Let f : R→ R be convex. Then

f

(∫
x dµ(x)

)
≤
∫
f(x) dµ(x). (252)

Proof. Let x0 :=
∫
x dµ(x). Since f is a �nite convex function, we can �nd a non-vertical

hyperplane supporting its epigraph at (x0, f(x0)). In other words, we can �nd an a�ne function
A such that

A(x) ≤ f(x) ∀x (253)

A(x0) = f(x0). (254)

Using this and the fact that a�ne functions can be passed through integrals with respect to
probability measures, we have

f

(∫
x dµ(x)

)
= f(x0) = A(x0) = A

(∫
x dµ(x)

)
=

∫
A(x) dµ(x) ≤

∫
f(x) dµ(x). (255)

Proposition C.3. Let Λ1,Λ2 be independent random variables on the Euclidean space X. Let
g : X ×X → R be measurable. Assume IE g(Λ1,Λ2) is �nite. De�ne the function h(x) : X → R
by h(x) = IE g(x,Λ2). Then we have

IE g(Λ1,Λ2) = IEh(Λ1) (256)

Proof. Let (Ω,F , P ) Be the underlying measure space. r Tao[17], to say that Λ1,Λ2 are inde-
pendent is to say that this probability space can be factored as (Ω1×Ω2,F1×F2, P1×P2) such
that for any (s1, s2) ∈ Ω1 ×Ω2, Λ1(s1, s2) depends only on s1 and Λ2(s1, s2) depends only on s2.
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Then applying Fubini-Tonei, we have

IE g(Λ1,Λ2) (257)

=

∫
g(Λ1(s1),Λ2(s2)) dP (s1, s2) (258)

=

∫∫
g(Λ1(s1),Λ2(s2)) dP2(s2) dP1(s1) (259)

=

∫
h(Λ1(s1)) dP1(s1) (260)

= IEh(Λ1). (261)

C.2 Gaussian Vectors

The following result is useful when working with Gaussian.

Proposition C.4 (Integral of the exponential of a quadratic). Let a ∈ R, b > 0. Then∫
exp(ax− bx2)dx =

√
π

b
exp

a2

4b
. (262)

Proof. ∫
exp(ax− bx2) dx = exp

(
a2

4b

)∫
exp

(
−(bx2 − ax+

a2

4b
)

)
dx (263)

= exp

(
a2

4b

)∫
exp

(
−
(√

bx− a

2
√
b

)2
)

dx. (264)

Now change variables to z =
√
bx− a

2
√
b
so that dx = 1√

b
dz. Then we have

exp
(
a2

4b

)
√
b

∫
exp(−z2) dz =

√
π

b
exp

a2

4b
. (265)

as desired.

Proposition C.5.

1. If Λ has distribution Normal(0, σ2) and a ∈ R is nonzero then aΛ has distribution Normal(0, a2σ2).

2. If Λ1 and Λ2 have distributions Normal(0, σ2
1) and Normal(0, σ2

2) and are independent, then
Λ1 + Λ2 has distribution Normal(0, σ2

1 + σ2
2)

Proof.
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1. If a > 0 we have

P (aΛ ≤ s) = P (Λ ≤ s

a
) (266)

=

∫ s
a

−∞

1√
2πσ2

exp(
−x2

2σ2
) dx (267)

=

∫ s

−∞

1√
2πa2σ2

exp(
−x2

2a2σ2
) dx. (268)

If a < 0, note that by symmetry −Λ has the same distribution as Λ and apply the above.

2. Using the independence of Λ1 and Λ2, the density of their sum is the convolution of their
densities.

f(z) =

∫
1√

(2π)2σ2
1σ

2
2

exp(
−x2

2σ2
1

) exp(−(z − x)2

2σ2
2

) dx (269)

=

∫
1√

(2π)2σ2
1σ

2
2

exp

(
−1

2σ2
1σ

2
2

(
(σ2

1 + σ2
2)x2 − 2σ2

1zx+ σ2
1z

2
))

dx. (270)

Apply Proposition C.4 with b =
σ2
1+σ2

2

2σ2
1σ

2
2
a = z

σ2
2
to get

f(z) =
1√

(2π)2σ2
1σ

2
2

√
2πσ2

1σ
2
2

σ2
1 + σ2

2

exp

(
z2

σ4
2

2σ2
1σ

2
2

σ2
1 + σ2

2

1

4
− σ2

1z
2

2σ2
1σ

2
2

)
(271)

=
1√

(2π)2σ2
1σ

2
2

√
2πσ2

1σ
2
2

σ2
1 + σ2

2

exp

(
z2

2σ2
2

(
σ2

1

σ1 + σ2
2

− 1

))
(272)

=
1√

2π(σ2
1 + σ2

2)
exp

(
− z2

2(σ2
1 + σ2

2)

)
(273)

as desired.

The next result is sometimes useful in relation to standard Gaussian vectors, who distributions
are rotationally invariant.

Proposition C.6. Fix a positive integer n and let In denote the n× n identity matrix. For any
θ ∈ [0, 2π] the 2n× 2n matrix

Uθ :=

[
cos θIn sin θIn
− sin θIn cos θIn

]
(274)

de�nes an isometry.

Proof. It su�ces to check that U∗U = I. This follows from the Pythagorean identity.

Proposition C.7 (Generating Function of a Gaussian Random Variable). Let Λ ∼ Normal(µ, σ2).
Let t ∈ R. Then

IE exp(tΛ) = exp(tµ+
1

2
t2σ2) (275)
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Proof.

IE exp(tΛ) =
1√

2σ2π

∫
exp(tx) exp(−(x− µ)2

2σ2
)dx (276)

=
exp(−µ

2

2σ2 )
√

2σ2π

∫
exp(− x2

2σ2
+ (t+

µ

σ2
)x) dx. (277)

De�ne a := (t+ µ
σ2 ) and b := 1

2σ2 and apply Proposition C.4. This gives us

√
2σ2π

exp(−µ
2

2σ2 )
√

2σ2π
exp

(
1

4

(
t+

µ

σ2

)2
2σ2

)
= exp(

−µ2

2σ2
) exp

(
1

2
σ2

(
t2 +

2tµ

σ2
+
µ2

σ4

))
(278)

= exp(tµ+
σ2t2

2
) (279)

as desired.

The following result bounds the tail probability of Gaussian random variables.

Proposition C.8. Let x > 0 ∫ ∞
x

exp
−t2

2
dt ≤ 1

x
exp(

−x2

2
) (280)

Proof. ∫ ∞
x

exp
−t2

2
d ≤

∫ ∞
x

t

x
exp
−t2

2
dt (281)

=
1

x

∫ ∞
x

d

dt

(
− exp

−t2

2

)
dt (282)

=
1

x
exp
−x2

2
(283)

Proposition C.9. [The χ2 distribution. Lemma 7.9 in Foucart and Rauhut[6]] Let g be a
standard Gaussian vector in Rn. Then Z := ‖g‖2 has density function

φ(u) =


1

2
n
2 Γ(n

2
)
u
n
2
−1 exp(−u

2 ) if u > 0

0 else
(284)

Proof. See Lemma 7.9 in Foucart and Rauhut[6].

Proposition C.10 (Norms of Gaussian vectors. Proposition 8.1 in Foucart and Rauhut[6]). Let
g be a standard Gaussian vector in an n-dimensional Euclidean space. Then

1.

IE‖g‖2 = n (285)
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2.

n√
n+ 1

≤ IE‖g‖ =
√

2
Γ(n+1

2 )

Γ(n2 )
≤
√
n (286)

Proof. To prove (285) note that the quantity in question is the sum of the variances of n standard
normal random variables.

To show, (286), �rst apply the convexity of −
√
· and Proposition C.2 (Jensen's Inequality):

− IE‖g‖ = IE−
√
‖g‖2 ≥ −

√
IE‖g‖2 = −

√
n (287)

so that

IE‖g‖ ≤
√
n. (288)

Next use Proposition C.9 to compute

IE‖g‖ =

∫ ∞
0

u
1
2φ(u) du (289)

=

∫ ∞
0

1

2
n
2 Γ(n2 )

u
n
2
− 1

2 exp(
−u
2

) du (290)

=
2
n
2

+ 1
2

2
n
2 Γ(n2 )

∫ ∞
0

t
n
2
− 1

2 exp(−t) dt Let t =
u

2
(291)

=

√
2

Γ(n2 )
Γ(
n

2
+

1

2
) (292)

where the last line follows from the de�nition of the gamma function (see Folland[7] page 58).
Finally, to get the lower bound, note that if we let gn+1 denote a standard Gaussian vector in an
n+ 1 dimensional vector space, then

(IE‖g‖)(IE‖gn+1‖) = 2
Γ(n2 + 1

2)

Γ(n2 )

Γ(n2 + 1)

Γ(n2 + 1
2)

= 2
Γ(n2 + 1)

Γ(n2 )
= 2(

n

2
) = n (293)

where we have used the functional equation for the gamma function (see Folland[7] page 58).
Then using (288)

IE‖g‖ =
n

IE‖gn+1‖
≥ n√

n+ 1
(294)

as desired.

The following result is used by Chandrasekaran et al.[3] in their bound of the Gaussian width
of the tangent cone of the nuclear norm. It appears as part of a very dense paper, and so I have
not investigated it further.

Proposition C.11 (Theorem II.13 Davidson and Szarek[5]). Let Λ be a random linear trans-
formation between Euclid an spaces whose matrix with respect to a pair of orthonomal bases is
m× n with all entries independent Normal(0, 1). Let t ≥ 0. Then

P (‖Λ‖ ≥
√
m+

√
n+ t) ≤ exp(

−t2

2
) (295)
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