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Abstract

After introducing word vectors, I survey word vector translation schemes. I em-1

phasize the hubness problem and the question of whether a seed dictionary is2

necessary. To facilitate comparison, I implement several schemes and apply them3

to a common dataset.4

1 Word vectors and the distributional hypothesis5

The distributional hypothesis states that a word’s meaning is encoded in the frequencies with which6

other words occur near it in natural text. These frequencies are called the word’s environment. To7

elucidate the distributional hypothesis, Harris [1, p. 156] notes, “If we consider oculist and eye-8

doctor we find that, as our corpus of actually-occurring utterances grows, these two occur in almost9

the same environment.” That oculist and eye-doctor are synonyms is revealed by their being found10

near the same words. Erk [2, p. 17:5] observes “the direct object of eat is usually a concrete object11

and edible.” Even disregarding syntax, words frequently found near eat usually pertain to eating.12

Finally, Landauer and Dumais [3, p. 211, 222, 226] present evidence suggesting that after they have13

learned the tens of thousands of words the average person uses in everyday speech, children acquire14

the rest of their vocabulary (most words are rarely spoken) by repeatedly encountering words in15

context while reading, a process to which distribution is key. Clearly, a word’s environment encodes16

a great deal of semantic information.17

Many researchers (e.g. [4], [5], [6]) have devised methods for automatically extracting and storing18

this semantic information. I present one such method described by Mikolov et al. [6]. Let the19

sequence of words (wi)
r
i=1 be a naturally-occurring text, called a corpus. Let V be the vocabulary20

of unique words occurring in the corpus1. For each unique word, we aim to find a vector in Rd that21

summarizes its environment and hence reveals its semantics. Thus our algorithm outputs f : V →22

Rd, the mapping between words and their associated vectors, which are called word vectors.23

Together with the word vectors, our algorithm learns an auxiliary function g that maps Rd to the24

|V |-dimensional probability simplex, and which given a word’s vector, produces an estimate of the25

probability of finding each other word in V near that word in the corpus. Force the kth component26

of g to have the form27

(g(x))k :=
exp(〈qk, x〉)∑|V |
j=1 exp(〈qj , x〉

(1)

where k ∈ {1, . . . , |V |} and where the vectors q1, . . . , q|V | ∈ Rd are the parameters we determine28

when learning g.29

1For a corpus to be useful, we must have r � |V |.
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To generate training data, we draw words — called predictor words — randomly from the corpus.30

For each predictor word, we draw a word — called a predicted word— nearby2. We train f and g31

by stochastic gradient descent so that each predicted word is probable given its predictor word3.32

The word vectors produced by this training procedure capture striking semantic information. Firstly,33

words with similar word vectors have similar meanings. This is a consequence of the continuity34

of g: if ‖f(w1) − f(w2)‖ is small, then ‖g(f(w1)) − g(f(w2))‖ is small, so w1 and w2 have35

similar environments, so by the distributional hypothesis they have similar meanings4. Secondly,36

algebraic relationships between word vectors correspond to semantic relationships between words.37

For example, it is typical to find that f(France) ≈ f(England) + f(Paris) − f(London), which38

corresponds to the analogies “France is to Paris as England is to London”, and “France is to England39

as Paris is to London”. This property can be understood via the following informal analysis. Let40

xP := f(Paris), xL := f(London), xE := f(England), v := xE +xP −xL, and 1 ≤ k1, k2 ≤ |V |.41

Consider g(v)k1

g(v)k2
=

g(xE)k1

g(xE)k2

g(xP )k1

g(xP )k2

g(xL)k2

g(xL)k1
. The words London and Paris have similar environments,42

so usually g(xP )k1

g(xP )k2

g(xL)k2

g(xL)k1
≈ 1 and g(v)k1

g(v)k2
≈ g(xE)k1

g(xE)k2
. However, if k1 is more associated with43

Paris and less associated with London than k2, then g(v)k1

g(v)k2
>

g(xE)k1

g(xE)k2
. Also, the reverse holds.44

So for most word indices k, including words pertaining to being a Western European nation, it is45

likely that g(v)k ≈ g(xE)k
5. However, for words associated with Paris and Frenchness we expect46

g(v)k > g(xE)k and for words associated with London and Englishness we expect g(v)k < g(xE)k.47

Thus it is reasonable to expect g(v) to approximate g(f(France)) and so it is also reasonable (though48

not logically necessary) to expect v ≈ f(France). That word vectors can algebraically express49

analogies suggests that they align vector space structure with semantic structure6.50

2 Translation using word vectors51

If a group of words have a certain semantic relationship, their translations have the same semantic52

relationship. By the arguments of the previous section, this semantic consistency between languages53

implies an algebraic consistency between the corresponding word vectors. For example, if f maps54

English words to their word vectors and g maps French words to their word vectors, then just as55

f(king)−f(man)+f(woman) ≈ f(queen) so g(roi)− g(homme)+ g(femme) ≈ g(reine). Hence56

if W maps the word vectors of one language to the word vectors of their translations, we should57

expect W to be linear7.58

Mikolov et al. [8] use this observation to devise a method for expanding small bilingual lexicons,59

which we describe next. Assume we have separately found word vectors for two languages, called60

the source and target. Let the columns of U ∈ Rd1×n1 be the source word vectors, and let the61

columns of Z ∈ Rd2×n2 be the target word vectors. Use D ∈ {0, 1}n1×n2 to represent the bilingual62

lexicon, settingDi,j = 1 if word i of our source language translates to word j in our target language.63

Note that since our lexicon is small, most columns and rows of D will be zero. Also note that we do64

not assume translations are one-to-one. We seek W ∈ Rn1×n2 solving65

W ∈ argmin
W∈Rn1×n2

∑
i,j

Di,j‖WU:,i − Z:,j‖2. (2)

2Usually one picks a window size about five, meaning that an instance of word B is near an instance of word
A if it occurs less than five words before or less than five words after it.

3Thus letting near(i) denote the indices in V of the words occurring near the ith word in the corpus, the
global objective function to be minimized is −

∑r
i=1

∑
k∈near(i) log g(f(wi))k.

4Unfortunately the reverse is not guaranteed. Suppose we are in R2 with |V | = 2 and q1 = (0, 1),
q2 = (1, 0). Then as α → ∞, the frequencies associated with the word vectors (α, α

2
) and (α, 0) become

identical, even though the vectors differ.
5The jump from statements about ratios to statements about raw probabilities requires our assumption that

g(xP )k1
g(xP )k2

g(xL)k2
g(xL)k1

is usually 1 and is never enormous or tiny.
6See section 3 of Pennington et al. [7] for a word vector algorithm derived using this kind of argument.
7We have actually only argued that W needs to preserve vector addition or subtraction. By repeated vector

addition one can argue it must preserve multiplication by integers, and hence multiplication by rationals. If we
also assume W is continuous, then it follows it must preserve multiplication by real numbers, and so must be
linear.
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Table 1: Results from my implementations of word vector translation schemes. S is seed dictionary
size. A1, A5, A10 are top-one, top-five, and top-ten accuracy. H10

20 is the average 20-neighbour
hubness score of the top 10 hubs in the target language when the test set is mapped from the source
language. The dataset is the English-Italian Europarl data released by Dinu et al. [9]. In all CSLS
examples, k = 10. See text for method details.

Row Method S A1 A5 A10 H10
20

1.1 Mikolov et al. [8] + norm 5000 0.3380 0.4833 0.5393 19.8
1.2 Mikolov et al. [8] 5000 0.3493 0.4907 0.5453 17.2
1.3 Procrustes [10] 5000 0.3673 0.5280 0.5860 13.2
1.4 Procrustes +norm [11] 5000 0.3687 0.5273 0.6340 13
1.5 GC [9] 5000 0.3553 0.5280 0.5840 3.1
1.6 Artetxe et al. [12] 25 0.3787 0.5360 0.5913 17
1.7 GC [9] + 2000 pivots 5000 0.3800 0.5620 0.6240 -
1.8 Procrustes + GC 5000 0.3833 0.5400 0.5913 3.4
1.9 Procrustes + GC + 2000 pivots 5000 0.3927 0.5633 0.6260 -

1.10 Procrustes+ centering [12] 5000 0.3927 0.5633 0.6173 12.4
1.11 Procrustes + CSLS [13] 5000 0.4540 0.6160 0.6607 6.1

Let ((i1, j1), (i2, j2), . . . , (im, jm)) be the indices of all the nonzero entries of D. Let X ∈ Rd1×m66

be the matrix whose kth column is U:,ik , and let Y ∈ Rd2×m be the matrix whose kth column is67

Z:,jk . Then (2) is equivalent to 868

W ∈ argmin
W∈Rn1×n2

‖WX − Y ‖2, (3)

which we solve by least-squares969

WXX∗ = Y X∗. (4)

Given a vector ui ∈ Rn1 representing a word in the source language not present in the seed dic-70

tionary D (i.e. Di,: = 0), we find k candidate translations by taking the words corresponding to71

the k columns of Z closest to Wui according to cosine similarity (for x, y 6= 0, cossim(x, y) =72

〈x, y〉/(‖x‖‖y‖)). Denote these k candidates by NNk(Wui, Z). To test the translation method,73

pick a test set of words from the source vocabulary whose translations are known and compute74

NNk(Wui, Z) for each ui in the test set. The translation of ui is a success if NNk(Wui, Z) con-75

tains the word vector of the correct translation.76

I implemented this method and tested it on the dataset published by Dinu et al. [9]10, which consists77

of 200000 300-dimensional word vectors derived by the method of Mikolov et al. [6] from the78

European parliament corpus for both English and Italian. The dataset also includes a training and79

test set, of which I make use. The training set consists of 5000 high frequency word pairs, while the80

test set consists of 1500 word pairs drawn from 5 frequency bins. The results are in row 1.2 of Table81

1. The top-one accuracy of about 35 percent is impressive, and empirically supports the theoretical82

arguments by which the method was derived.83

As rest of this essay is devoted to schemes that, like the one above, make use of word vectors for84

word translation. it seems appropriate to mention the uses of such schemes. The most obvious use is85

the automatic generation of large bilingual dictionaries between language pairs for which such data86

is scarce. A second use is in the transference of a model learned on word vectors of one language to87

word vectors of another for which less data is available. As noted by Artetxe et al. [10], examples88

of models that lend themselves to this kind of transfer include parsing, document classification, and89

part-of-speech tagging. Lastly, a word translation scheme can be used as a baseline against which to90

compare translation schemes that operate on larger units of text.91

8In this essay, ‖·‖ or 〈·, ·〉 applied to matrices always denote the Frobenius norm or inner product.
9This always has a solution since RdXX∗ = RmX∗ since {y ∈ Rm : yX∗ = 0} ⊥ RdX .

10See http://clic.cimec.unitn.it/˜georgiana.dinu/down/
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3 Learning an isometric map92

As (1) reveals, the semantic information captured by word vectors is encoded in their inner-products.93

Thus if we seek to learn a linear translation map W between the word vectors of two languages, it94

is reasonable to force our map to preserve these inner products. This amounts to forcing W to be an95

isometry (i.e. an orthogonal matrix), in which case we can directly solve (2) by noting that96 ∑
i,j

Di,j‖WU:,i − Z:,j‖2 =
∑
i,j

Di,j

(
‖U:,i‖2 + ‖Z:,j‖2 − 2〈WU:,i, Z:,j〉

)
(5)

implies that W ∈ Rd×d minimizes ‖WU:,i − Z:,j‖2 if and only if it maximizes97 ∑
i,j Di,j〈WU:,i, Z:,j〉 = 〈W,ZD∗U∗〉. Let ZD∗U∗ =

∑d
i=1 σiaib

T
i be the singular value de-98

composition. Then by Cauchy-Schwarz,99

〈W,ZD∗U∗〉 =
∑
i

σi〈Wbi, ai〉 ≤
∑
i

σi‖Wbi‖‖ai‖ =
∑
i

σi. (6)

By the orthonormality of {ai}di=1 and {bi}di=1 we can achieve this bound by setting W =100 ∑n
i=1 aib

T
i . Thus we have found an optimal translation map W 11.101

Some authors consider normalizing word vectors, either during word vector training [11] or after-102

ward [10], to force the Euclidian distance, by which W is learned, to agree with cosine similarity,103

according to which nearest-neighbors are found. I tried learning an isometric map with and without104

normalization. My results in rows 1.3 and 1.4 of Table 1, which agree with those of Artetxe et al.105

[10, p. 2292], show that while forcing W to be an isometry yields an accuracy increase, normal-106

ization has minimal effect. Indeed, when W is not forced to be isometric, normalization decreases107

accuracy, as row 1.1 of Table 1 shows. It may be that normalization imposed during training would108

be more beneficial.109

4 Hubness110

We next focus on the nearest-neighbor strategy by which transformed source-language vectors are111

matched with target-language words. Let Q ⊂ Rd. For any x ∈ Rd and for any positive integer112

k, let NNk(x,Q) denote the k points in Q closest to x (breaking ties arbitrarily). Furthermore, let113

Q′ ⊂ Rd and define for any y ∈ Q,114

Hk(y,Q
′, Q) := |{x ∈ Q′ : y ∈ NNk(x,Q)}|, (7)

that is Hk(y,Q
′, Q) denotes the number of points x ∈ Q′ such that y is on the k nearest neighbor115

list of x. A point y ∈ Q whose Hk(y,Q
′, Q) is much larger than that of most points in Q is called116

a hub. Radovanic et al. [14] and other researchers have observed empirically that high dimensional117

datasets often have hubs, and that hubs can impede algorithms relying on neighbor retrieval. While118

the definitive theoretical treatment of hubness has yet to be written, Theorem 3 in Newman et al.119

[15] and Theorem 1 in Radovanovic et al. [16], suggest that hubness may be a fundamental property120

of many distributions in high dimensional spaces. These theorems do not apply directly to our case,121

because we do not know the distribution of our data, and because cosine similarity does not satisfy122

the hypothesis required of the distance function in the theorems12. Nevertheless, Dinu et al. [9]123

observed that hubness is often a problem in the automatic translation methods we have discussed:124

certain words in the target language are inappropriately chosen as the translation for many source125

words. These hubs are often low-frequency specialized words. For example, when I applied Mikolov126

et al.’s [8] method to Italian to English translation using Dinu et al.’s [9] Europarl data, I found that127

the rare English words Harsnet, Jalilabad, and Soviet-backed were on the 10-nearest neighbor lists128

70, 36, and 27 mapped test set words.129

11The problem of finding an orthogonal matrix that best maps one list of vectors to another is called the
Procrustes problem, an allusion to a mythical Greek torturer.

12If we normalize our data so that cosine similarity is equivalent to Euclidian distance, then our distance func-
tion becomes admissible, but the distribution of our word vectors (on the surface of the unit sphere) becomes
inadmisable.
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4.1 Hubness mitigation130

The nearest neighbor relation used in our translation scheme is asymmetric, in that while a point131

can only have one nearest neighbor (ignoring ties), it can be nearest neighbor to many points. One132

could correct this asymmetry by looking for translation pairs in which the target word vector and133

the mapped source word vector are mutual nearest neighbors. This would eliminate the hubness134

problem, but, since not every vector is the nearest neighbor of its nearest neighbor, it would prevent135

us from translating many words. Next, I discuss two methods for addressing the hubness problem136

which attempt to approximate the notion of mutual nearest neighbors without sacrificing the ability137

to translate an arbitrary source word.138

Dinu et al. [9] suggests an approach called Global Correction (GC), which I will describe. Let139

Q′, Q ⊂ Rd let z ∈ Q′, y ∈ Q. Define140

order(z, y,Q′) := min{k ∈ N : z ∈ NNk(y,Q
′)}, (8)

that is, order(z, y,Q′) is the rank of z on y’s nearest neighbor list. Define for z ∈ Q′141

gcscore(z, y,Q′) := order(z, y,Q′)− cossim(z, y). (9)
Now let W be a linear map derived by one of the above methods, let Q := {y1, . . . , yn2} be the142

target vocabulary, and letQ′ := {Wx1, . . . ,Wxm} be the mapped test set. Then to find k candidate143

translations for a word vector x, we take the words corresponding to the k points y inQwith smallest144

gcscore(Wx, y,Q′). The GC scheme approximates the notion of mutual nearest neighbors by, for145

a given mapped point Wx, finding the point nearest to it among those points to which it is nearest146

(note that order yields an integer while −1 ≤ cossim ≤ 1). We should expect GC to perform better147

when the test set Q′ is larger, since in this case order(x, y,Q′) is more informative. As Dinu et al.148

[9] note, one way to achieve this with a fixed test set is to simply add extra mapped words called149

pivots to Q′ for the purposes of computing order(x, y,Q′). I implemented this scheme. The results150

with 0 pivots and 2000 pivots are in rows 1.5 and 1.7 of Table 1.151

Conneau et al. [13] introduce another approach to hubness reduction using a new similarity func-152

tion called Cross-domain similarity local scaling (CSLS). To define it, fix a positive integer k, and153

assume we have normalized word vectors and an isometric transform W . Let P := {x1, . . . , xn1
}154

denote the source vocabulary, and let Q := {1, . . . , yn2
} denote the target vocabulary. Define the155

functions rP : Q→ R and rQ : P → R by156

rP (y) :=
1

k

∑
x∈NNk(W∗y,P )

cossim(x,W ∗y), rQ(x) :=
1

k

∑
y∈NNk(Wx,Q)

cossim(Wx, y). (10)

rP and rQ measure the average cosine similarity of a point in one domain to its neighborhood in157

the other domain. We should generally expect rP and rQ to be large for hubs and small for isolated158

points. Finally, define CSLSW : P ×Q→ R by159

CSLSW (x, y) = 2 cossim(Wx, y)− rQ(x)− rP (y). (11)
To translate a word with word vector x, we compute the isometric map W from the seed dictionary160

as before, and then find x’s nearest neighbor according to CSLSW . Note that we need not compute161

rQ(x) since this term will be the same for every y whose similarity with x we measure. I imple-162

mented the CSLS algorithm, and the results are shown in row 1.11 of Table 1 (K = 10). Since163

points tend to be similar according to the CSLS measure if their cosine similarity to each other ex-164

ceeds their cosine similarity to their neighborhoods, CSLS, like the GC scheme, approximates the165

notion of mutual nearest neighbors.166

While the CSLS scheme depends on the map W being an isometry, the GC scheme does not con-167

strain W . To clarify the comparison, I modified the GC scheme to force an isometric W . The168

resulting scheme has improved performance (see rows 1.8 and 1.9 of Table 1), but is still inferior169

to the CSLS scheme. A possible explanation is that the GC scheme is rigid, in that no matter how170

close a target word vector is to a mapped source word vector, the target word vector cannot be its171

nearest neighbor if there is another target word vector assigning it a lower order. In contrast, the172

CSLS scheme is flexible, trading off hubness information against distance information.173

To further investigate, I computed the statistic H10
20 , the average hubness of the top 10 hubs, for var-174

ious methods (Table 1). As expected, the methods with hubness reduction have lower H10
20 than the175

methods without. Interestingly, GC has lower H10
20 than CSLS even though CSLS is more accurate.176

This may support my earlier analysis: the GC method prioritizes hubness at the cost of accuracy.177
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5 Overcoming the need for a seed lexicon178

The word vectors of a given language form a highly complex configuration of points in a high-179

dimensional Euclidian space. The problem of word translation is to, as best as possible, align one180

such configuration with another. So far we have used information from seed dictionaries to facilitate181

alignment, but one could also align using the shapes of the two configurations themselves. In so182

doing, one might reduce dependence on the seed dictionary, or eliminate it entirely.183

Artetxe et al. [12] approach the problem of word translation with a small seed dictionary by viewing184

(3) as a sub-problem of a larger problem. To be more precise, let185

D := {D ∈ {0, 1}n1×n2 : for all i ∈ {1, . . . , n1} there is a unique j ∈ {1, . . . , n2} such that Di,j = 1}
(12)

be the set of valid dictionaries. Note that in (12) we are assuming that valid dictionaries map each186

source word to exactly one target world. We aim to solve187

argmin
D∈D

min
W∈O(d)

n1∑
ii=1

n2∑
j=1

Di,j‖WU:,i − Z:,j‖2 (13)

in which we optimize over the set of valid bilingual dictionaries D and for each such dictionary op-188

timize over the orthogonal matricesO(d), attempting to find the one that best realizes the dictionary.189

The authors propose the alternating minimization scheme Algorithm 1, which is similar to algo-190

rithms that have been used for 3D point cloud alignment in engineering problems [17]. The idea is191

to alternately update W to best realize D, and then update D so that each word vector translates to192

its nearest neighbor under the mapping W . I implemented algorithm 1 using 25 random words from

1 while improvement in trY D∗X∗T ∗ greater than threshold do
2 W ← argminW∈O(d)

∑n1

ii=1

∑n2

j=1Di,j‖WX:,i − Y:,j‖2 ;
3 Di,j = 0n1×n2 ;
4 for i = 1 . . . n1 do
5 j = argmaxj cossim(Wxi, yj) ;
6 Di,j = 1;

Algorithm 1: Alternating minimization scheme for bilingual dictionary construction with a
small seed dictionary.

193
the 5000-word English-Italian Europarl training dictionary as the seed. I found that the convergence194

of the algorithm was dependent on a preprocessing step: Artetxe et al. center the vectors in each195

language so that their mean is zero before applying their algorithm13. Without mean centering, the196

algorithm produces a dictionary with 0 test accuracy on every iteration after the first, and appears197

to converge to such a dictionary14. With mean centering, it converges to a high-quality dictionary198

(see row 1.6 of Table 1). This suggests multiple local minima are present, and that mean-centering199

directs the algorithm to the correct one.200

To further investigate the effect of mean centering, I applied it to the standard Procrustes translation201

procedure without an iterative component, reproducing the results of Artetxe et al. [10, p. 2292] (see202

row 1.10 of Table 1). As Artetxe et al. observed, it yields a significant boost to accuracy. Artetxe203

et al. [10] explain mean centering as a means of ensuring that the expected inner product of any204

two vectors in the same language is zero. It is possible that this improves the quality of the learned205

isometric mapping W by ensuring that for each vector xi in a language, there are only a small206

number of vectors xj in the same language whose images Wxj severely restrict the value of Wxi
15.207

For comparison, I tried the Mikolov et al. method with a random 25 word dictionary and got 0 accu-208

racy, confirming results from Artexe et al. [12, p. 456]. Interestingly, the alternating minimization209

scheme produces an accurate dictionary but nevertheless has a high H10
20 score. This may indicate210

13Note that after this operation, word vectors are no longer normalized.
14It could also be converging to a better dictionary very slowly.
15Matlab experiments reveal that the inner product of a vector in a given language with a random vector in

the same language has a distribution concentrated around its mean.
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that the algorithm is achieving accuracy independently of hubness reduction. If so, one might use211

this insight to design a high quality word vector translation algorithm by attempting combine both212

types of information and reduce hubness while matching word vector distributions.213

5.1 Generative adversarial net214

Observing that generative adversarial nets specialize in aligning distributions, Conneau et al. [13]215

apply one to the problem of word vector translation without a seed dictionary. They achieve accuracy216

comparable to that of the best methods requiring a seed dictionary. Key to their approach is a CSLS-217

based measure of the similarity of two distributions, which they use to adjust their gradient-descent218

step size. I implemented their algorithm and applied it to several toy problems, but did not have time219

to tune and run the GAN on linguistic data. Some observations: in toy problems I constructed, the220

algorithm failed when the distributions did not initially overlap. This behavior was identical when221

I modified the algorithm to use a Wasserstein GAN instead of standard GAN. It may be that when222

the distributions do not sufficiently overlap, the discriminator becomes extremely effective quickly,223

preventing the generator from learning.224

6 Conclusions and future work225

In this essay I surveyed word vector translation, attempting to offer insight based on experiments. Of226

the methods using full seed dictionaries, the Procrustes CSLS methods was the best by far, balancing227

similarity and hubness information. Of the methods I implemented, only that of Artetxe et al. [12]228

could handle small seed dictionaries, but the results of Conneau et al. [13, p. 7]) indicate their229

GAN can beat it at this task. I finish with some suggestions for future work. One conclusion I230

can draw from Table 1 is that hubness is responsible for a significant portion of the differences in231

accuracy between methods (though it is not the only factor: see row 1.6). Hubness, however, is232

poorly understood. There is an opportunity for a cunning theoretician to give it a firmer foundation,233

and provide rigorous justification for the performance of neighbor-retrieval-based algorithms.234

As another observation, I note that the algorithms surveyed here can be divided into two classes:235

those that find the linear transformation W using only a seed dictionary (Mikolov et al. [8], Pro-236

crustes, and their variants), and those that find W by directly attempting to align the two word237

vector configurations, using the seed dictionary only for initialization (Artetxe et al. [12]) or not at238

all (Conneau et al. [13]). There is room for another class of algorithm, which would attempt to align239

the word vector configurations, but which would never forget the seed dictionary. Such an algorithm240

would involve the optimization of the sum of two terms: one measuring the degree of alignment of241

the two word vector configurations, and one measuring faithfulness to the original seed dictionary.242

To go further, one could observe that besides Conneau et al.’s GAN [13] and the alternating mini-243

mization algorithm of Artetxe et al. [12], all algorithms discussed here have two stages. In the first,244

they learn a linear transformation between the Euclidian spaces of the two languages. In the sec-245

ond, they match the mapped source vectors to the target vectors using some measure of proximity.246

One could combine the two stages and directly learn a mapping between source vectors and target247

vectors, perhaps minimizing an objective measuring the sum of hubness, the degree to which the248

mapping differs from an isometry, and unfaithfulness to a seed dictionary. Unfortunately, such an249

algorithm would likely be a combinatorial nightmare, but perhaps a relaxation could be found.250

I did not have time to apply my implementation of Conneau et al.’s GAN [13] to language data,251

but had I been able to do so, I would have liked to have measured how GAN training interacts252

with hubness. Artexe et al.’s algorithm [10], the GAN’s main competitor, achieves good accuracy253

despite significant hubness. It would be interesting to see to what extent this is also true of the GAN,254

especially given that the GAN algorithm includes refinement steps based on the CSLS hubness255

reduction scheme.256

Finally, consider the analogy between word vector translation and the image registration problem. In257

this analogy, the Mikolov et al. [8] and Procrustes word-translation methods correspond to anchor-258

point based image registration, while the alternating minimization scheme of Artetxe et al. [12]259

resembles an iterative closest point (ICP) type registration algorithm. The literature on image reg-260

istration is vast (see [18]), with algorithms ranging from those based on physical processes to those261

justified by statistical consideration. It is probable that some of these algorithms are ripe for expor-262

tation to other domains.263
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